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Prediction-powered inference is a framework for performing valid statistical inference when an
experimental dataset is supplemented with predictions from a machine-learning system. The framework
yields simple algorithms for computing provably valid confidence intervals for quantities such as means,
quantiles, and linear and logistic regression coefficients without making any assumptions about the
machine-learning algorithm that supplies the predictions. Furthermore, more accurate predictions
translate to smaller confidence intervals. Prediction-powered inference could enable researchers to draw
valid and more data-efficient conclusions using machine learning. The benefits of prediction-powered
inference were demonstrated with datasets from proteomics, astronomy, genomics, remote sensing,
census analysis, and ecology.

I
magine a scientist has a machine-learning
system that can supply accurate predic-
tions about a phenomenon farmore cheaply
than any gold-standard experimental tech-
nique. The scientist may wish to use these

predictions as evidence in drawing scientific
conclusions. For example, accurate predictions
of three-dimensional structures have beenmade
for a vast catalog of known protein sequences
(1, 2) and are now being used in proteomics
studies (3, 4). Such machine-learning systems
are increasingly common in modern scientific
inquiry, in domains ranging from cancer prog-
nosis to microclimate modeling. Predictions
are not perfect, however, and this may lead to
incorrect conclusions. Moreover, as predic-
tions beget other predictions, the cumulative
effect can amplify the imperfections. How can
modern science leverage machine-learning
predictions in a statistically principled way?
One way to use predictions is to follow the

imputationapproach: Proceed as if they are gold-
standard measurements. Although this lets the
scientist draw conclusions cheaply and quickly
owing to the high-throughput nature of the
machine-learning system, the conclusionsmaybe
invalid because the predictionsmay have biases.
Another possibility is to apply the classical

approach: Ignore the machine-learning predic-
tions and only use the available gold-standard
measurements, which are typically far less abun-
dant than predictions. The resulting discov-
eries will be statistically valid, but the smaller
amount of data will limit the scope of possible
discoveries.
This manuscript presents prediction-powered

inference, a framework that achieves the best
of both worlds: extracting information from
the predictions of a high-throughputmachine-
learning system and guaranteeing statistical

validity of the resulting conclusions. Prediction-
powered inference provides a protocol for com-
bining predictions, which are abundant but
not always trustworthy, with gold-standard
data, which are trusted but scarce, to compute
confidence intervals and P values. The result-
ing confidence intervals and P values are sta-
tistically valid, as in the classical approach, but
also leverage the information contained in the
predictions, as in the imputation approach, to
make the confidence intervals smaller and the
P values more powerful.
Prediction-powered inference applies to any

machine-learning system; as such, it absolves
the need for case-by-case analyses dependent
on the machine-learning algorithm on hand.
The proposed protocol thereby could enable
researchers to report on and assess the evi-
dence for their conclusions in a fully stand-
ardized way.

Protocol for prediction-powered inference

The protocol for prediction-powered inference
proceeds as follows. The scientist wishes to
construct a confidence interval for a quantity
q�, such as the mean outcome or a regression
coefficient quantifying the statistical associ-
ation between the outcome and a feature.
Toward this goal, they have access to a small
gold-standard dataset of features paired with
outcomes, X ;Yð Þ ¼ X1;Y1ð Þ;…; Xn;Ynð Þð Þ, as
well as the features of a large unlabeled data-
set, X ′;Y ′ð Þ ¼ X1′;Y1′

� �
;…; XN′ ;YN′

� �� �
, where

the true outcomesY
0
1 ;…;Y

0
N are not observed.

Typically, N is much larger than n . Both data-
sets are sampled at random from a larger pop-
ulation. Further, for both datasets the scientist
has predictions of the outcomes made by a
machine-learning algorithm based on the fea-
tures, denoted Ŷ1 ;…; Ŷn

� �
and Ŷ1′;…; ŶN′

� �
,

respectively. The following exposition focuses
on confidence intervals; however, by the stan-
dard duality between confidence intervals and
P values, the presented tools immediately
carry over to valid P-value constructions and
hypothesis tests; see supplementary materials
(SM) for details.

Prediction-powered inference uses the gold-
standard dataset to quantify and correct for
the errors made by the machine-learning al-
gorithm on the unlabeled dataset, thereby
enabling researchers to reliably incorporate
predictions when constructing confidence
intervals. The three-step protocol is outlined
below and visualized in Fig. 1.
1) Estimand. The first step is to select an

estimand q�. The estimand is the quantity the
scientist is interested in knowing—for exam-
ple, the mean outcome E Yi½ �, median outcome
median Yið Þ, a linear regression coefficient ob-
tained by regressing Y onto X , etc.
2) Measure of fit and rectifier. The key step

is to identify the right measure of fit mq and
rectifierDq for the selected estimand. For every
candidate value of the estimandq, themeasure
of fitmq is computed on the unlabeled dataset
imputed with predictions, ðX ′; Ŷ ′Þ and quanti-
fies how likelyq� is to be equal toqon the basis
of the imputed data. The closer mq is to zero,
the more plausible it is for q� to be equal to q.
The rectifier Dq is a notion of prediction er-

ror that is relevant for the estimand of interest.
It is defined as the difference of themeasure of
fit mq computed on the labeled data, X ;Yð Þ,
and the labeled data when the true outcomes
are replaced with predicted ones, X ; Ŷ

� �
. If

the predictions are perfect, the rectifier is equal
to zero.
Table 1 states the appropriate measure of fit

and rectifier for common estimands of in-
terest: the mean outcome, median outcome,
q-quantile of the outcome, and linear and
logistic regression coefficients when regress-
ing Y onto X . A general recipe for deriving
the right measure of fit and corresponding
rectifier for a broad class of other estimands
is provided in the SM.
3) Prediction-powered confidence inter-

val. Finally, the measure of fit and rectifier
are carefully combined to form a prediction-
powered confidence interval for q�. This pro-
cess is called rectifying the confidence interval.
The prediction-powered confidence interval is
constructed asCPP ¼ q such that mq þ Dqj j≤f
wq að Þg and is guaranteed to contain the esti-
mand with probability at least 1� a . Here,
wq að Þ is a constant that depends on the con-
fidence level; it is explicitly stated in Theorem
S1 in the SM.

Properties of prediction-powered inference

We proved mathematically that prediction-
powered inference yields a confidence interval
that contains the true value of the estimand
at the desired confidence level, such as 95%.
Notably, this validity is guaranteed for any
machine-learning algorithm and any underlying
data distribution. Similarly, the correspond-
ing P values are also valid for any machine-
learning algorithm and data distribution. See
SM for the details of the mathematical proof
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of validity. A researcher relying on a deep neu-
ral network for predictions can therefore draw
reliable conclusions, even though its predic-
tions will inevitably be imperfect. Further-
more, prediction-powered inference enables
more informative inferences than the classi-
cal approach, in which the researcher does not
use machine-learning predictions: The confi-
dence intervals are narrower, and the P values
are more powerful. This is intuitive; prediction-
powered inference carefully extracts infor-
mation from the imputed data and thus has
access to a larger sample size.

General applicability

Beyond quantities such asmeans, quantiles, and
regression coefficients, the principle of prediction-
powered inference can be used for construct-
ing valid confidence intervals for any estimand
that can be expressed as theminimizer of a con-
vex objective function. Thismaster protocol,which
generalizes all the special cases instantiated in
Table 1, is the core technical contribution of this
work. We explained prediction-powered infer-
ence in greater generality and proved its validity
in this general case in the SM. Because many
important quantities can be expressed in terms
of a convex-optimization problem, prediction-
powered inference thus addresses many data-

analysis goals beyond those explicitly demon-
strated in this article.

Inference under distribution shift

Prediction-powered inference is also appli-
cable to settings with distribution shift, i.e., the
more challenging case where the unlabeled
data are collected under different conditions
than the gold-standard data. Two types of dis-
tribution shift are considered: label shift and
covariate shift. The protocol retains the same
properties as before: It is statistically valid for
any machine-learning algorithm and boosts
statistical power by making use of machine-
learning predictions.
For covariate shift—the setting where only

the feature distribution changes between the
labeled and the unlabeled data—prediction-
powered inference handles all estimation prob-
lems handled by the master protocol. This is
done by appropriately reweighting the data;
see Corollary S13 in the SM for details.
For label shift—the setting where only the

label proportions change between the labeled
and the unlabeled data—prediction-powered
inference can be applied to estimands of the
form q� ¼ E n Yi′

� �� �
, for a fixed function n. For

example, choosing n yð Þ ¼ 1 y ¼ kf g asks for
inference on the proportion of instances that

belong to class k. See Theorem S3 in the SM
for a full description of the method.

Application of prediction-powered inference
to real datasets

Wedemonstrated prediction-powered inference
on several real tasks. In each, we computed a
prediction-powered confidence interval for an
estimand and compared it to intervals obtained
through the classical approach and the impu-
tation approach. In all cases, the imputation ap-
proach, which usesmachine-learning predictions
without accounting for prediction errors, did
not contain the true value of the estimand. The
widths of the two valid approaches, prediction-
powered and classical, were compared as a func-
tion of the amount of labeled data used. In
addition, we compared the number of labeled
examples needed to reject a null hypothesis at
level 1� a ¼ 95% with high probability. See (5)
for a Python package implementing prediction-
powered inference, which contains code for
reproducing the experiments, and (6) for the
data used in the experiments.

Relating protein structure and
posttranslational modifications

The goal was to characterize whether vari-
ous types of posttranslational modifications

Fig. 1. Protocol for prediction-powered inference. The protocol is illustrated
graphically as a block diagram. The inputs are the gold-standard dataset, the
unlabeled dataset, and the machine-learning (ML) algorithm. The top block
contains an analysis on gold-standard data, in which the rectifier, a measure of
the prediction errors, is estimated using the labeled dataset. The bottom block

contains an analysis on unlabeled data, wherein the quantity of interest is
estimated using predictions. These analyses combine to form the prediction-
powered confidence interval. For concrete examples of the rectifier and measure
of fit, see Table 1. For a detailed theoretical exposition and more general
definitions of these quantities, see SM.
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(PTMs) occurred more frequently in intrin-
sically disordered regions (IDRs) of proteins
(7). Recently, Bludau et al. (3) studied this
relationship on an unprecedented proteome-
wide scale by using structures predicted by
AlphaFold (1) to predict IDRs, in contrast to
previous work, which was limited to far fewer
experimentally derived structures.
To quantify the association between PTMs

and IDRs, the authors applied the imputation
approach: They computed the odds ratio be-
tween AlphaFold-based IDR predictions and
PTMs on a dataset of hundreds of thousands
of protein sequence residues (8). Using pre-
diction-powered inference, we could combine
AlphaFold-based predictions together with
gold-standard IDR labels to give a confidence
interval for the true odds ratio that is statis-
tically valid, in contrast with the interval con-
structed with the imputation approach, and
smaller than the interval constructed using
the classical approach. We used the fact that
the odds ratio could be written in terms of two
means and applied the recipe from the first
row of Table 1; see SM for details.
We had 10,803 data points fromBludau et al.

(3). For each of 100 trials, we randomly sam-
pled n points to serve as the labeled dataset
and treated the remaining N ¼ 10; 803� n
points as the unlabeled dataset for which we
did not observe the IDR labels. For all values
of n and all three different types of PTMs that
we examined, the prediction-powered confi-
dence intervals were smaller than classical
intervals; see row A in Fig. 2. Often, the clas-
sical intervals were large enough that they
contained the odds ratio value of one, which
means the direction of the association could
not be determined from the confidence inter-
val. However, the imputed confidence interval

was far too small and significantly overesti-
mated the true odds ratio. To reject the null
hypothesis that the odds ratio is no greater
than one, prediction-powered inference re-
quiredn ¼ 316 labeled observations, and the
classical approach required n ¼ 799 labeled
observations; see row A in Table 2.

Galaxy classification

The goal was to determine the demographics
of galaxies with spiral arms, which are cor-
related with star formation in the disks of
low-redshift galaxies, and therefore, contrib-
ute to the understanding of star formation in
the Local Universe. A large citizen science ini-
tiative called Galaxy Zoo 2 (9) has collected
human annotations of roughly 300,000 im-
ages of galaxies from the Sloan Digital Sky
Survey (10) with the goal of measuring these
demographics. We sought to explore the use
of machine learning to improve the effective
sample size and decrease the requisite num-
ber of human-annotated galaxies.
We focused on estimating the fraction of

galaxies with spiral arms. We had 1,364,122
labeled galaxy images from Galaxy Zoo 2, from
which we simulated labeled and unlabeled
datasets as follows. For each of 100 trials, we
randomly sampled n points to serve as the la-
beled dataset and used the remaining N ¼
1; 364; 122� n points as the unlabeled data-
set. We then used the first row of Table 1 to
construct prediction-powered intervals. The
prediction-powered confidence intervals for
the mean were consistently much smaller than
the classical intervals and they retained validity,
and the imputation strategy failed to cover the
ground truth; see Fig. 2, row B. To reject the
null hypothesis that the fraction of galaxies
with spiral arms is at most 0.2, prediction-

powered inference required n ¼ 189 labeled
examples, and classical inference required
n ¼ 449 examples; see Table 2, row B.

Distribution of gene expression levels

Next, we constructed prediction-powered con-
fidence intervals on quantiles that character-
ize how a population of promoter sequences
affects gene expression. Recently, Vaishnav et al.
(11) trained a state-of-the-art transformer model
to predict the expression level of a particular
gene induced by a promoter sequence. They
used the model’s predictions to study the ef-
fects of promoters—for example, by assess-
ing how quantiles of predicted expression
levels differ between different populations
of promoters.
Here we focused on estimating different

quantiles of gene expression levels induced
by native yeast promoters. We had 61,150 la-
beled native yeast promoter sequences from
Vaishnav et al. (11), fromwhich we simulated
labeled and unlabeled datasets as follows.
For each of 100 trials, we randomly sampled
n points to serve as the labeled dataset and
used the remainingN ¼ 61; 150� n points as
the unlabeled dataset. We then used the sec-
ond and third row of Table 1 to construct
prediction-powered intervals for the median,
as well as the 25% and 75% quantiles, of the
expression levels. The prediction-powered con-
fidence intervals for all three quantiles were
much smaller than the classical intervals for
all values ofn. See row C in Fig. 2 for the results
for the median and fig. S6 for the other two
quantiles. We also evaluated the number of la-
beled examples required by prediction-powered
inference and classical inference, respectively,
to reject the null hypothesis that the median
gene expression level is atmost five. Prediction-
powered inference requiredn ¼ 764 examples
and classical inference required n ¼ 900 ex-
amples; see row C in Table 2.

Estimating deforestation in the Amazon

The goal was to estimate the fraction of the
Amazon rainforest lost between 2000 and
2015. Gold-standard deforestation labels for
parcels of land are scarce, having been col-
lected in large part through field visits, an
expensive process not suited for large areas
(12). However, machine-learning predictions
of forest cover based on satellite imagery are
readily available for the entire Amazon (13).
We began with 1596 gold-standard deforesta-
tion labels for parcels of land in the Amazon.
For each of 100 trials, we randomly sampled
n data points to serve as the labeled dataset
and used the remaining data points as the
unlabeled dataset. We used the first row of
Table 1 to construct the prediction-powered
intervals. The imputation approach yielded a
small confidence interval that failed to cover
the true deforestation fraction. The classical

Table 1. Prediction-powered inference for common statistical problems. Given a measure
of fit mq and rectifier Dq, prediction-powered inference computes a confidence interval as
CPP ¼ q such that mq þ Dqj j ≤ wq að Þf g, where wq að Þ is a constant that depends on the error level a
(see Theorem S1 in the SM). Algorithms S1 to S6 are stated in the SM. The last row (“convex
minimizer”) refers to a method that generalizes the methods in previous rows.

Estimand Measure of fit mq Rectifier Dq Procedure

Mean outcome q� 1
N

XN

i¼1
Ŷi′

1
n

Xn

i¼1
Ŷi � Yi

� �
Alg. S1

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Median outcome
1
2N

XN

i¼1
sign q‐Ŷi′

� �
1
n

Xn

i¼1
1 Yi ≤ qf g � 1 Ŷi ≤ q

n o� �
Alg. S2

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

q-quantile of outcome
�qþ 1

N

XN

i¼1
1 Ŷ 0

i ≤ q
n o

1
n

Xn

i¼1
1 Yi ≤ qf g � 1 Ŷi ≤ q

n o� �
Alg. S3

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Linear regression q� ðX′ÞþŶ ′ XþðŶ � YÞ Alg. S4
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Logistic regression
1
N

XN

i¼1
Xi′

1

1þe
�q> X

i
′
� Ŷi′

� 	
1
n

Xn

i¼1
Xi Ŷi � Yi
� �

Alg. S5
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Convex
minimizer

1
N

XN

i¼1
rLq Xi′; Ŷi′

� �
1
n

Xn

i¼1
rLq Xi; Ŷi

� �
�rLq Xi; Yið Þ

� �
Alg. S6

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .
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approach did cover the truth at the expense of
a wider interval and, accordingly, diminished
inferential power. The prediction-powered in-
tervals were smaller than the classical intervals
and retained validity; see row D in Fig. 2. We also
compared the number of gold-standard defores-
tation labels required by prediction-powered
inference and the classical approach to reject the
null hypothesis that there is no deforestation.
We obtainn ¼ 21 labels for prediction-powered
inference and n ¼ 35 labels for the classical
approach; see row D in Table 2.

Relationship between income and private
health insurance

The goal was to investigate the quantitative
effect of income on the procurement of private
health insurance using US census data. Con-
cretely, we used the Folktables interface (14) to
download census data from California in the
year 2019 (378,817 individuals). As the labeled
dataset with the health insurance indicator, n
census entries were randomly sampled. The
remaining data were used as the unlabeled
dataset. We used a gradient-boosted tree (15)
trained on the previous year’s data to predict
the health insurance indicator in 2019. We
constructed a prediction-powered confidence
interval on the logistic regression coefficient
using the fifth row of Table 1. Results in row E
in Fig. 2 show that prediction-powered in-
ference covered the ground truth, the classi-
cal interval was wider, and the imputation
strategy failed to cover the ground truth. We
also compared the number of gold-standard
labels required by prediction-powered infer-
ence and the classical approach to reject the
null hypothesis that the logistic regression
coefficient is no greater than 1:5� 10�5 . We
observed a significant sample size reduction
with prediction-powered inference, which re-
quired n ¼ 5569 labels, whereas classical
inference required n ¼ 6653 labels.

Relationship between age and income in a
covariate-shifted population

The goal was to investigate the relationship
between age and income using US census data.
The same dataset was used as in the previous
experiment, but the features were age and sex,
and the target was yearly income in dollars.
Furthermore, a shift in the distribution of the
covariates was introduced between the gold-
standard and unlabeled datasets by randomly
sampling the unlabeled dataset with sampling
weights of 0.8 for females and 0.2 for males.
We used a gradient-boosted tree (15) trained
on the previous year’s raw data to predict the
income in 2019. We constructed a prediction-
powered confidence interval on the ordinary
least squares (OLS) regression coefficient using
a covariate-shift robust version of prediction-
powered inference, stated in Corollary S13 in
the SM. Results in row F in Fig. 2 show that

A

B

C

D

E

F

G

Fig. 2. Comparison of prediction-powered inference to the classical and imputation approaches
on real tasks. Each row (A to G) is a different application domain. Panel 1 plots confidence intervals
computed using the three approaches; for prediction-powered inference and the classical approach,
intervals for five randomly chosen splits into labeled and unlabeled data are plotted. The value denoted
as “ground truth” is the estimate computed on all nþ N data points (the true labels were available
for all data points for the purpose of conducting the experiments). Panel 2 plots the average confidence
interval width, as well as the width in five randomly chosen trials, for varying n, for prediction-powered
inference and the classical approach; both are statistically valid solutions. The last problem setting
(G) does not have a classical counterpart because the data are collected under distribution shift, hence
the classical approach is not valid.
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prediction-powered inference covered the
ground truth, the classical interval was wider,
and the imputation strategy failed to cover the
ground truth. We also compared the number
of gold-standard labels required by prediction-
powered inference and the classical approach
to reject the null hypothesis that the OLS re-
gression coefficient is no greater than800 .We
observed a significant sample size reduction
with prediction-powered inference, which re-
quiredn ¼ 177labels, whereas classical inference
required n ¼ 282 labels.

Counting plankton

Assessment of the increases in phytoplank-
ton growth during springtime warming is
important for the study of global biogeo-
chemical cycling in response to climate change.
We counted the number of plankton observed
by the Imaging FlowCytobot (16, 17), an auto-
mated, submersible flow cytometry system,
at Woods Hole Oceanographic Institution
in the year 2014. We had access to data from
2013, which were labeled, and we imputed
the 2014 data with machine-learning pre-
dictions from a state-of-the-art ResNet fine-
tuned on all data up to and including 2012.
The features, Xi, are images of organic matter
taken by the FlowCytobot and the labels, Yi ,
are one of {detritus, plankton}, where detritus
represents unspecified organic matter.
The labeled dataset consisted of 421,238

image–label pairs from 2013, and we received
329,832 labeled images from 2014. We used
the data from 2014 as our unlabeled data and
confirmed our results against those that were
hand-labeled. The years 2013 and 2014 had
a distribution shift, primarily caused by the
change in the base frequency of plankton ob-
servations with respect to detritus. To apply
prediction-powered inference to count the
number of plankton recorded in 2014, we
used the label-shift-robust technique de-
scribed in Theorem S3 in the SM. The results
in row G in Fig. 2 show that prediction-
powered inference covered the ground truth
and the imputation strategy failed to cover the
ground truth.

Related work
Thematically, prediction-powered inference is
most similar to the work of Wang et al. (18),
who introduced a method to correct machine-
learning predictions for the purpose of subse-
quent inference. However, this procedure is
not guaranteed to provide coverage in general
and requires strong assumptions about the
relationship between the prediction model
and the true response, whereas prediction-
powered inference provides provably valid con-
clusions under minimal assumptions about the
data-generating distribution.
There has been an increasing body of work

on estimationwithmany unlabeled data points
and few labeleddata points (19–27), focusing on
efficiency in semiparametric or high-dimensional
regimes. Prediction-powered inference con-
tinues in this vein but focuses on the setting
where the scientist has access to a good pre-
dictive model fit on separate data. This allows
tackling a much wider range of estimands
(e.g., minimizers of any convex objective) and
gives valid inferences without assumptions
about the machine-learning model. Second,
prediction-powered inference goes beyond ran-
dom sampling and applies to certain forms of
distribution shift.
Prediction-powered inference is conceptual-

ly related to conformal prediction (28). Both
methodologies leverage a predictive model
and a labeled dataset. From this point on,
however, the twomethods diverge: Prediction-
powered inference has additional unlabeled
data and gives a confidence set that contains a
population-level quantity such as the mean
outcomewith high probability; conformal pre-
diction gives a confidence set for a test instance
that contains the true label with high prob-
ability. Thus, the goals of prediction-powered
inference and conformal prediction differ
greatly from the statistical perspective. Fur-
thermore, the mathematical tools used in the
frameworks are entirely different, and neither
method can be applied nontrivially to solve
the objective of the other.
See SMfor a furtherdiscussionof relatedwork

and the relationship of prediction-powered

inference to existing baselines, as well as for
empirical comparisons.

Conclusions

The past decade has witnessed rapid develop-
ment and deployment of large-scale machine-
learning systems across science. This surge is
proceeding, however, with little statistical jus-
tification to allow these black-box systems to
be used to draw scientific conclusions respon-
sibly. Prediction-powered inference is a stan-
dardized protocol for constructing provably
valid confidence intervals and P values, al-
lowing the scientist to use the power and scale
of machine-learning systems. On an array of
scientific problems, we demonstrated that
prediction-powered inference achieved high
statistical power owing to the use of machine-
learning predictions and retained statistical
validity.
One question that remains open is how to

handle more general forms of distribution
shift. In practice, distribution shifts are often a
result of a joint influence of several different
forms of shift, including covariate shift and
label shift and possibly others. Understanding
how to handle such settings remains an im-
portant avenue for future work.
A limitation of prediction-powered inference

is that it does not improve upon the classical
approach when the predictions are not accurate
enough or when the unlabeled dataset is not
large enough compared to the gold-standard
dataset. These points are demonstrated, both
theoretically and empirically, in SM section
“CasesWhere Prediction-Powered Inference Is
Underpowered.”Nevertheless, given the grow-
ing number of settings with excellent predic-
tive models and abundant unlabeled data, there
is increasing potential for prediction-powered
inference to benefit scientific research.
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