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Machine learning–based design has gained traction in the sciences, most notably in the
design of small molecules, materials, and proteins, with societal applications ranging from
drug development and plastic degradation to carbon sequestration. When designing objects
to achieve novel property values with machine learning, one faces a fundamental challenge:
how to push past the frontier of current knowledge, distilled from the training data into the
model, in a manner that rationally controls the risk of failure. If one trusts learned models too
much in extrapolation, one is likely to design rubbish. In contrast, if one does not extrapolate,
one cannot find novelty. Herein, we ponder how one might strike a useful balance between
these two extremes. We focus in particular on designing proteins with novel property values,
althoughmuch of our discussion is relevant tomachine learning–based designmore broadly.

CHALLENGES IN FINDING NOVELTY WITH
MACHINE LEARNING–BASED DESIGN

How can one find novelty, given only what is
known? Focusing on machine learning–

based protein design, herein we highlight con-
ceptual challenges and current approaches to
solving them, as well as underexplored areas
and future directions.

The goal of protein design is to specify the
sequence of a protein that satisfies a novel condi-
tion. There are three types of novel conditions a
protein engineermay seek.One type of novelty is
in the sequence—that is, one seeks a protein that
differs in sequence from that of known proteins,
butnotnecessarily in its structureorbiochemical
or biophysical properties. For example, one may
seek a novel sequence for an enzyme to avoid a
patent, or to serve as a different initial sequence

for directed evolution. Much recent work inma-
chine learning–based protein design focuses on
sequence novelty, with applications ranging
from gene therapy vectors (Bryant et al. 2021;
Zhu et al. 2022) and antibodies (Shin et al.
2021) to signal peptides (Wu et al. 2020) and
enzymes (Russ et al. 2020; Hawkins-Hooker et
al. 2021; Repecka et al. 2021; Madani et al. 2023)
A second type of novelty is in the structure—for
example, when building a scaffold to support a
functional site (Correia et al. 2014; Sesterhenn
et al. 2020; Wang et al. 2022).

The third type of novelty is in the biophysical
or biochemical properties. That is, one seeks a
protein with property values that have yet to be
observed, which necessitates that the sequence,
and likely the structure, are both also novel. Ex-
amples tackled with machine learning include
enzymes with enhanced catalytic activity (Fox
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et al. 2007; Romero et al. 2013; Biswas et al. 2021;
Greenhalgh et al. 2021; Fram et al. 2023), bright-
er fluorescent proteins (Brookes et al. 2019; Bis-
was et al. 2021; Stanton et al. 2022), optimized
channelrhodopsins for optogenetics (Bedbrook
et al. 2017, 2019), and cell-type-specific gene
therapy vectors (Zhu et al. 2022). Herein, we
focus on this third type of novelty. Although
machine learningmodels can facilitate achieving
this goal, the pursuit of novelty is also the root
cause of unique in silico challenges, the focus of
our discussion.

The difficulty of these challenges depends on
the extent of novelty sought. Is a protein with a
melting point that is one degree higher or that
fluoresces slightly brighter at a similar wave-
length novel? Novelty is not a binary phenome-
non. Rather, it exists on a spectrum, and the
further one is on this spectrum the greater the
challenges. At the extreme end is what could be
considered “radical novelty,”which is not just an
improvement of an existing phenomenon, but
rather a fundamentally different outcome. For
example, one might refer to the design of an
enzyme that catalyzes a reaction completely dif-
ferently from what known enzymes can catalyze
as radical novelty. If the conditions one is inter-
ested in are not radically novel, then machine
learning–based design may already be close to
providing reliable solutions. Radical novelty is
much more elusive.

We frame our discussion around three key
tasks formachine learning–based design of nov-
el property values. Thefirst two are (1) learning a
trustworthy model that makes predictions for
the property of interest given, for example, a pro-
tein sequence and/or structure, and (2) choosing
what we call a design algorithm: an algorithm
that consults the model to propose sequences
intended to have the desired property condition.
Not all design strategies appear to explicitly com-
prise these two tasks, such as some conditional
generative modeling approaches. Nevertheless,
these concepts and corresponding challenges
are present under the hood.

Although sometimes overlooked, there is
also a third key task, that of (3) uncertainty quan-
tification. Quantifying uncertainty of the mod-
el’s predictions helps a protein engineer under-

standwhat risk portfolio they are adoptingwhen
choosing a design strategy.

Our goal herein is not to comprehensively
survey existing methods, nor to recast these into
a unifying framework. Rather, we identify and
discuss fundamental challenges, corresponding
strategies, and underexplored areas that arise
from the following dilemma: to find novel prop-
erty values, any design algorithm must consider
regions of sequence space away from the train-
ing data, but these regions are precisely where
any learned model is least trustworthy.

Scope of Protein Design Problems
Considered

Sometimes the property of interest is sufficiently
mediated by the protein’s structure that the goal
can be reframed as identifying a sequence that
folds into a specific structure or substructure. A
common example is when the goal is to bind to a
target molecule where the structure of the de-
sired complex is known with high resolution.
Such structure-based design has traditionally
been performed with biophysics-based model-
ing (Kuhlman and Bradley 2019), but is now
increasingly done with deep generative models
(Norn et al. 2021; Dauparas et al. 2022; Hsu et al.
2022b;Watson et al. 2023); we refer the reader to
Ovchinnikov and Huang (2021), Pan and Kor-
temme (2021), and Malbranke et al. (2023) for
excellent reviews of these developments. How-
ever, there are many settings in which structure-
based design is not a viable solution. In particu-
lar, how structural changes affect the property of
interest is not always known with sufficient pre-
cision, with catalytic activity of enzymes being a
classic example (Romero and Arnold 2009; To-
kuriki and Tawfik 2009). Additionally, the prop-
ertymaybe substantiallymediatedby conforma-
tional dynamics or quantum chemistry (Gao
and Truhlar 2002; Faheem and Heyden 2014),
neither of which can, at present, be readily cap-
tured by structure-based design. In these set-
tings, onemust rely additionally on directed evo-
lution (Romero and Arnold 2009; Arnold 2018)
and/or an approach based on amachine learning
model that leverages assay and/or evolutionary
data relevant to thepropertyof interest.We focus
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herein on this latter setting, which includes that
of machine learning–assisted directed evolution
(Wu et al. 2019; Wittmann et al. 2021).

Machine learningmodels in this settingmay
be trained in a supervised fashion on sequences
labeled with experimentalmeasurements. Alter-
natively, some models may capture the property
more implicitly, such as density models fit to
families of protein sequences (Cheng et al.
2016; Figliuzzi et al. 2016; Hopf et al. 2017; Ries-
selman et al. 2018; Laine et al. 2019; Frazer et al.
2021; Shin et al. 2021; Trinquier et al. 2021) or to
natural protein sequences more broadly (Alley
et al. 2019; Madani et al. 2020; Meier et al. 2021;
Ferruz et al. 2022; Notin et al. 2022a,b). The like-
lihood of thesemodels or approximations there-
of can provide useful information about protein
properties. The conditional likelihoods of struc-
ture-conditioned generative models can also be
used in a similar fashion (Dauparas et al. 2022;
Hsu et al. 2022b; Ingraham et al. 2022).

Overview of Challenges

Almost surely, one does not have access to the
true causal model for the property of interest,
and without the true causal model, model pre-
dictions are almost surely wrong. They are par-
ticularly likely to be wrong given the shifts
between the distributions of training and de-
signed sequences that are necessary when seek-
ingnovel property values.Despite the inability to
access true causal models, predictive models can
still be useful. How can one ensure that such
models are useful for design? Motivated by this
question, this article is organized into three sec-
tions, summarized next.

First, we ask: How can one learn a trustwor-
thy model for pursuing novel properties? We
consider how different types of data—such as
evolutionary and assay-labeled—contain differ-
ent types of noise and biases. We then discuss
how the search for novel property values induces
distribution shifts between the training and de-
signed sequences that jeopardize howmuch one
can trust the model. Finally, we discuss how to
potentially mitigate such problems by infusing
relevant biological knowledge into the inductive
bias of the model, analogous to how the convo-

lution operation in computer vision encodes
fundamental knowledge about the translational
invariance of objects in images.

Second, we ask: How can one quantify un-
certainty for design? Because design necessitates
making predictions for sequences far from the
training data, the predictions can deviate wildly
from the truth. It is therefore desirable to quan-
tify the model’s uncertainty, and thereby under-
stand the risk one is incurring, before synthesiz-
ing and measuring designed sequences in the
laboratory. To do so, one can choose from a va-
riety of technical notions of uncertainty that we
discuss, each with its own strengths and limita-
tions.

Finally, we ask: What are the design algo-
rithm considerations? Given a fixed budget of
sequences, how should the design algorithm
place its bets so as to maximize the chances of
finding a protein with the desired property val-
ues? One reasonable approach is for the design
algorithm to take into account the model’s un-
certainty. Or, alternatively, perhaps one should
quantify uncertainty jointly over the model and
the design algorithm.

HOW CAN ONE LEARN A TRUSTWORTHY
MODEL FOR PURSUING NOVEL
CONDITIONS?

We start by describing how one’s choices about
the training data impact themodel’s predictions.
We then discuss the distribution shifts between
training and test data that emerge from design,
and, finally, potential strategies tomitigate prob-
lems arising from these shifts.

Trade-Off between Quality and Quantity
of Training Data

To frame our discussion of how training data
choices impact predictions, we appeal to the re-
cently introduced bias-variance decomposition
of prediction error described by Posani et al.
(2023). Although bias-variance decompositions
have conventionally been used to help under-
stand why different model classes yield different
predictive performance (Geman et al. 1992;Has-
tie et al. 2001), Posani et al. (2023) repurpose the
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idea to understand how choices in curating ho-
mologous protein sequences affect how well the
likelihoods of a Potts model fit to those se-
quences can provide a ranking of protein prop-
erty values. Inspired by their work, we appeal
to a similar framework to discuss the impact of
training data more broadly on prediction error.

More concretely, consider the prediction er-
ror for a given test sequence, when averaged over
predictionsmade frommodels trained on differ-
ent random draws of data from a fixed distribu-
tion (Geman et al. 1992;Hastie et al. 2001).1 This
average prediction error can be decomposed into
two parts. The first is a bias component, or the
average difference between the prediction and
true property value of the test sequence; intui-
tively, this component reflects how relevant the
training data are for the prediction task at hand.
The second, a variance component, captures
how sensitive the prediction is to perturbations
to the training data due to sampling; intuitively,
this component reflects the amount of informa-
tion content in the data set—more content is
harder to perturb. For example, given equal rel-
evance of the data, larger training data sets result
in lower-variance predictions because the infor-
mation contained in larger data sets is more ro-
bust to perturbations than that contained in
smaller ones. These bias and variance terms ex-
hibit a trade-off (Grenander 1952; Geman et al.
1992): if one chooses the training data in such a
way as to improve one, then typically the other
degrades. For example, increasing the amount of
training data by incorporating data that is less
relevant, such as using homologous protein se-
quences that are more evolutionarily distant, re-
sults in increased bias, but decreased variance.
Consequently, one can generally achieve differ-
ent points on a trade-off curve bymodulating the
quantity versus quality of the training data.Next,
we invoke this quantity–quality trade-off to gain
insights into choosing both assay-labeled and
evolutionary data.

Assay-Labeled Data

When choosing a laboratory assay to label pro-
tein sequences, there is typically a trade-off be-
tween two extremes. On one end, there are high-
quality, low-throughput experiments that yield
measurements of a few dozen to a few thousand
sequences at most, but which directly measure
the biochemical or biophysical property of inter-
est (Acker and Auld 2014; Markin et al. 2021).
Training a model on the small amount of result-
ing datawill result in low predictive bias but high
predictive variance. On the other end, there are
lower-quality, high-throughput assays that can
yield measurements of up to hundreds of thou-
sands or even millions of sequences, but which
only provide a biased proxy of the property of
interest. A common form of the latter are se-
quencing-based assays known collectively as
deep mutational scanning, in which a pool of
sequences is subject to selection experiments
that indirectly encourage sequences with the de-
sired condition to become more abundant rela-
tive to other sequences (Fowler and Fields 2014;
Wrenbeck et al. 2017). For example, to measure
howwell different enzymesequences catalyze the
biosynthesis of a compound necessary for a cell’s
survival, those enzymes can be expressed in a
population of cells, whose subsequent survival
rates reflect the catalytic efficiencies of the vari-
ants. From such data, one can derive a quantita-
tive label for each sequence reflecting howmuch
moreabundant it becameafter the selection—for
example, bycomputing ratiosof sequencecounts
from before and after the selection (Fowler et al.
2011; Rubin et al. 2017), although recent work
has shown how to improve such quantification
using density ratio estimation (Busia and List-
garten 2023). Even though such labels indirectly
inform us about the biophysical property of in-
terest, they will generally be biased because fac-
tors unrelated to the property can drive changes
in sequence abundance (Song et al. 2021). Using
them as training data consequently introduces
predictive bias, albeit with low predictive vari-
ance due to the typically large data sets.

In either the high-quality–low-throughput
or low-quality–high-throughput settings, it can
be fruitful to augment assay-labeled data with

1Note that for the purposes of our discussion, we do not
consider randomness in the test data, as done in some
bias-variance analyses in the machine learning literature
(Bishop 2007).
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evolutionary data—that is, increasing quantity at
the expense of quality (Alley et al. 2019; Biswas
et al. 2021; Hsu et al. 2022a). The blend of data
types that achieves the optimal trade-off between
quantity and quality will be different for each
protein engineering campaign. Ultimately, em-
pirical assessments will dictate the choice, al-
though these may be guided at times by theoret-
ical results such as those in Posani et al. (2023),
discussed next.

Homologous Sequence Data

One can also understand the effects of curating
homologous sequences with respect to the bias-
variance trade-off. The goal is to identify a set of
sequences known to appreciably exhibit the
property of interest, and then fit a density model
to those sequences. The likelihood of a sequence
under such amodel, if correctly specified, should
then correlate with its real-valued property of
interest. However, there are often only a handful
of proteins, if any, that are laboratory-verified to
exhibit the property of interest above some
threshold. The likelihoods of a density model
fit to such a small number of protein sequences
would have low bias as property predictions, but
extremely high variance. To reduce this variance
at the expense of increased bias, one can increase
the quantity of training data by using heuristics
to identify proteins that are likely—but not
known with certainty—to exhibit the property.
One popular heuristic is to include homologous
protein sequences, or homologs: those that are
evolutionarily related to a natural protein that
appreciably exhibits the property of interest. If
these proteins underwent the same selective
pressure that gave rise to that property, then
they too should exhibit it. However, one never
knows the extent to which they experienced that
selective pressure, if at all. Moreover, finding ho-
mologs is itself a nontrivial task, as evolution
cannot be observed over the relevant timescales.
One must instead leverage heuristic search algo-
rithms based on sequence similarity (Altschul
et al. 1997; Johnson et al. 2010). Nevertheless, a
rich line of work has shown that the likelihoods
of various density models (Cheng et al. 2016;
Figliuzzi et al. 2016; Hopf et al. 2017; Riesselman

et al. 2018; Frazer et al. 2021; Shin et al. 2021;
Trinquier et al. 2021) and predictions based on
phylogenetic trees (Laine et al. 2019) fit to such
putative homologs can be correlated with the
property values of protein variants, despite the
predictive bias introduced by data of uncertain
relevance (Qin andColwell 2018;Weinstein et al.
2022a; Posani et al. 2023).

Algorithms for heuristically identifying ho-
mologs look through databases of natural pro-
tein sequences for similar sequences and have
various hyperparameters that can also be inter-
preted as navigating a quantity–quality trade-
off. In particular, hyperparameter settings that
return a larger set of sequencesmay include pro-
teins that are not actually homologs, whereas
settings that are too conservative may miss
some (Pearson 2013). Posani et al. propose
methods for selecting optimal subsets of homo-
logs based on their sequence distances to a wild-
type. Selection based on auxiliary information,
such as what types of species the homologs are
from, can also be useful heuristics for reducing
predictive bias (Jagota et al. 2023). Thinking cre-
atively about how to address the sources of pre-
dictive bias and variance we have discussed may
be fruitful for improving “zero-shot” protein
property prediction in settings where assay-la-
beled data are not yet available.

Pan-Protein Data

The proteinmodeling community has borrowed
ideas from the field of natural language process-
ing to train unsupervised sequence models on
pan-protein data (i.e., all known natural pro-
teins, spanning all known protein families and
beyond). The likelihood of these models, or ap-
proximations thereof, can also serve as zero-shot
predictions of protein property values (Meier
et al. 2021; Hesslow et al. 2022; Nijkamp et al.
2022; Notin et al. 2022a,b). In principle, learning
a density over all these proteins could result in an
implicit mixture of family-specific “modes,” in
which each mode captures the distribution of a
single protein family, similar to family-specific
models such as Potts models. However, depend-
ing on the inductive bias of the pan-protein
model architecture, such a model is likely to
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share information between families. The extent
of this information sharing can be viewed as im-
plicit navigation of the bias-variance trade-off.
Moreover, a single trained pan-protein model
likely navigates this trade-off differently for
different protein families: the fewer the known
homologs for a family, for example, the more
information the model may have borrowed
from other families. What is the nature of this
shared information, and what determines which
families contribute to it? Such questions should
be investigated to make sense of how, why, and
when such models may be providing benefits,
which in turn could be used to improve them
or other approaches.

As of thiswriting, the best approach for zero-
shot property prediction blends pan-protein and
family-specific models (Notin et al. 2022b),
which suggests that pan-protein models are not
yet achieving anoptimal trade-off by themselves.
Indeed, the best family-specific method (Laine

et al. 2019) performs similarly well, particularly
when homologs are abundant for the family
of interest (Fig. 1; Notin et al. 2022a,b). Far
more conspicuous than the margin between
these two methods’ average performance is how
dramatically their performances—as well as
the magnitude of the difference between their
performances—vary over different protein fam-
ilies (Fig. 1), which raises open and underex-
plored questions. How much do the sources of
predictive bias and variance we have described
account for this variation?Givenaprotein family
of interest, is it possible to anticipate beforehand
howaccurate the predictions from family-specif-
ic versus pan-protein methods will be?

We anticipate that in the future, it will be
possible to forgo curation of homologs entirely
and develop strategies for training pan-protein
models to automatically find more effective
points on the bias-variance trade-off. However,
as family-specific models can currently perform
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Figure 1. Protein property predictive performance of the top two methods on the ProteinGym substitution
benchmark. All data in this plot are from Notin et al. (2022a,b) and the affiliated ProteinGym substitution
benchmark (www.proteingym.org/substitutions). As of this writing, the two top-performing methods are one
that combines pan-protein and family-specific models (TranceptEVE [Notin et al. 2022b], orange dots) and one
family-specificmethod (GEMME [Laine et al. 2019], teal dots). Themethods’ performances on each ProteinGym
data set (each teal and orange dot) aremeasured by Spearman correlations between predictions and labels (higher
is better). To improve visualization, the magnitude of the difference between the methods is shown by a solid
vertical line. Its color denotes the winning method for that data set, and the line is thick if the difference is greater
than 0.05 and thin otherwise. For different data sets comprising mutants of the same wild-type protein, the
average correlation over those data sets is shown as a single dot. The same thresholds as in Notin et al. (2022a,b)
were used to categorize the amount of homologous data as low, medium, or high (demarcated by two solid gray
vertical lines), and the average correlation within each of these categories is computed for each of GEMME and
TranceptEVE (dashed horizontal teal and orange lines).
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similarly and are much easier to learn—or re-
quireminimal learning (Laine et al. 2019)—their
use may continue well into the future.

Accounting for Design-Induced
Distribution Shift

So far, our discussion has been about the train-
ing data, without considering the specific distri-
bution of test proteins that emerge from design.
We now examine this topic more closely.

Because we seek a protein with novel bio-
physical or biochemical property values, it fol-
lows that the designed proteins come from a
different distribution than the training proteins.
This phenomenon is referred to as a distribution
shift, which in many machine learning settings
is passively observed rather than purposely
induced as in the design setting. One type of
distribution shift that emerges inmachine learn-
ing–based design for novel property values is
feedback covariate shift (Fannjiang et al. 2022).
As a generalization of the more common covar-
iate shift (Shimodaira 2000), feedback covariate
shift additionally encompasses settings where
test inputs are chosen based on the training
data, such that they are dependent on it, rather
than simply drawn independently from a differ-
ent distribution. Because of this distribution
shift, the model’s predictions must be trustwor-
thy over regions of protein space “away from”
the training proteins—in particular, regions
characterized by the distribution of designed
proteins, as well as those the model examines
en route to finding that distribution.

If one knew these distributions in advance,
then one could deploy strategies for learning a
model to be accurate over the test rather than
training distribution (Shimodaira 2000; Sugiya-
ma et al. 2008; Bickel et al. 2009; Gretton et al.
2009). The chicken-and-egg dilemma, however,
is that one does not know the distribution of
designed proteins until after the model has
been learned; this is the “feedback” described
by feedback covariate shift. Nevertheless, it is
prudent to try to anticipate and account for
plausibly relevant distribution shifts. For exam-
ple, many design algorithms move through pro-
tein space in an iterative fashion to search for

promising proteins, where each move induces,
either implicitly or explicitly (Brookes et al.
2020), an intermediary distribution of proteins
currently under consideration. After each move,
one could relearn the model in lockstep with the
design algorithm such that it is more accurate
over the intermediary distribution (Fannjiang
and Listgarten 2020).

Learning strategies that account for distribu-
tion shift do have a cost: intuitively, all involve
reweighting the training data to better mimic the
test distribution. The more the training and test
distributions differ, the greater the variance of
these weights over the training data (Cortes
et al. 2010), which means that the model learns
from a smaller effective amount of data. Strate-
gies for mapping the training and test proteins
into feature spaces inwhich the distribution shift
ismoremild (Rhodes et al. 2020;Choi et al. 2022)
or tempering the weights so as to only partially
account for the shift (Grover et al. 2019) may
provide solutions.

Beyond changing how the model is learned,
uncertainty quantification strategies and design
algorithms can also take design-induced distri-
bution shifts into account, as we will discuss. In
general, problems arising from such shifts dis-
appear to the extent that the model captures the
true causalmechanism.Oneway tomove toward
this causal model is to incorporate relevant
knowledge into the inductive bias of the model,
as discussed next.

Incorporating Informative Inductive Biases

In practice, the true causal model is never avail-
able. As a practical mitigation strategy, one can
imbue the inductive bias of the model with
broadly applicable knowledge regarding how
amino acid sequences give rise to biophysical
or biochemical properties. For example, there is
evidence that this relationship is dominated by
single-site effects, and that higher-order or epi-
static interaction effects are sparse and typically
decay with increasing order (Sailer and Harms
2017; Otwinowski et al. 2018; Poelwijk et al.
2019; Yang et al. 2019a; Ballal et al. 2020; Brookes
et al. 2022; Ding 2022). Similarly, models that
generate or make use of protein structures
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should respect physical constraints and rotation-
al symmetries (Ingraham et al. 2019; Jing et al.
2021; Ingraham et al. 2022).

Particularly when using high-capacity deep
learning models, incorporating such domain-
specific, yet task-independent knowledge into
the model can reduce its degrees of freedom
without ruling out useful parts of parameter
space. Doing so can consequently improve the
efficiency with which the model distills relevant
information from the training data. Intuitively,
encoding these types of knowledge is tanta-
mount to having additional high-quality data,
enabling a reduction in both predictive bias
and variance.Critically, because such knowledge
is not based on the training data, a model that
incorporates it can better retain its accuracy fur-
ther away from the training data.

Coherently integrating appropriate knowl-
edge into the model is a case-by-case challenge.
Sometimes, as in the case of rotational symme-
tries, such knowledge is absolute and should be
enforced as a hard constraint (Cohen and Well-
ing 2016; Geiger and Smidt 2022), although
computational issues can remain challenging.
In contrast, the sparsity and decay of epistatic
interactions with increasing order are phenom-
ena that hold to different extents for different
protein properties, so should only be softly en-
forced. In one approach, Aghazadeh et al. (2021)
leverage ideas and algorithms from compressed
sensing to encourage sparse epistatic interac-
tions in neural networks, although they use a
binaryalphabet anddonotdiscriminatebetween
low- and high-order effects. The main technical
challenge in incorporating knowledge about
epistasis is how to tractably compute the combi-
natorially large number of higher-order interac-
tions between protein sites (Erginbas et al. 2023)
or devise clever ways to avoid doing so.

So far, we have discussed incorporating
knowledge that would be useful for almost
any protein property prediction task. However,
one can also leverage task-specific biophysical
knowledge. Although the accuracy of learned
models degrades further away from the training
data, biophysics-based models crafted in a rela-
tively data-freemanner shouldhave roughlyuni-
form accuracy over protein space, even if learned

models outperform them near their training
data. To capitalize on this intuition, Nisonoff
et al. (2022) developed an easily instantiable
and computationally efficient formalism for
blending information from biophysics-based
models and Bayesian neural network models of
the same properties. A key component of their
approach is the uncertainty of the predictions,
the topic of our next discussion.

HOW CAN ONE QUANTIFY UNCERTAINTY
FOR DESIGN?

Thus far, we have discussed how the quality of
themodel’s predictions, especially away from the
training data, is affected by choices regarding the
training data and inductive biases of the model.
However, it can prove useful to not only improve
predictions, but also quantify uncertainty over
them, which can help us assess risk in design-
ing new proteins. The precise notion of un-
certainty quantification that is most useful for
protein design is an open and underexplored
question. One must decide what entity needs
uncertainty quantification, what notion of un-
certainty is suitable, and finally how to go about
quantifying it.

First, what is the entity whose uncertainty
needs to be quantified? An obvious candidate is
the property prediction for any individual test
protein, for which we will discuss both Bayesian
and frequentist approaches in the remainder of
this section. In designing a library of proteins,
however, one may alternatively want to quantify
uncertainty for the average, median, or other
quantiles of the property values contained in
the library, to reason about its collective perfor-
mance. This idea was first proposed and tackled
by Wheelock et al. (2022) under a Bayesian lens
and will be fruitful to continue investigating.

Bayesian Uncertainty Quantification

In the Bayesian framework, one specifies a prior
distribution over the predictive model parame-
ters that encodes the user’s current beliefs, aswell
as a likelihoodmodel that gives, for each possible
setting of the model parameters, the probability
of the data. The key Bayesian operation is to up-
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date the prior distribution to be more consistent
with the evidence contained in the data, by re-
weighting each parameter setting according to
the likelihood of the data under that setting.
This update yields a posterior distribution that
encodes updated beliefs about the predictive
model parameters, which can in turn be used
to derive a posterior distribution over the predic-
tion for any test point, called the posterior pre-
dictive distribution. The variance and other
measures of dispersion of the posterior predic-
tive distribution are natural and commonly used
notions of uncertainty for predictions.

An elegant aspect of the Bayesian framework
is that different components can be interpreted
as accounting fordifferent sources ofuncertainty
(Kiureghian and Ditlevsen 2009). In particular,
the likelihood model, if correctly specified, cap-
tures what is called aleatoric uncertainty, or un-
certainty due to inherent stochasticity in the un-
derlying causal mechanism being modeled.
Aleatoric uncertainty never vanishes, even with
infinite data. In contrast, the process of updating
the prior based on the data captures reduction in
epistemic uncertainty, or uncertainty due to lack
of data, which vanishes with infinite data—at
which point the prior has no influence over the
posterior. One satisfying consequence is that
posterior predictive distributions for test inputs
further from the training inputs naturally have
higher variance.

For exact, tractable computation of the pos-
terior distribution, the Bayesian framework re-
quires particular pairings of prior distributions
and likelihood models, known as conjugate
pairs, which may not be the ones that most ac-
curately describe one’s beliefs about the system.
Nevertheless, these can work well in practice:
Bayesian notions of uncertainty from Gaussian
process regression models have been put to
good use in protein engineering (Romero et al.
2013; Bedbrook et al. 2017, 2019; Greenhalgh
et al. 2021; Rapp et al. 2023). Beyond the use
of conjugate pairs, accessing the posterior re-
quires sampling methods such as Markov chain
Monte Carlo methods (Neal 1996), or varia-
tional inference (Gal 2016; Zhang et al. 2019),
which learns an approximation to the posterior
that affords easy sampling. See Gal (2016) for a

thorough study of tools for the latter in deep
learning.

In contrast to frequentist approaches, Baye-
sian notions of uncertainty do not generally sat-
isfy any guarantees about their relationship with
the true value of the entity. For example, one
might seek a guarantee that the true property
value is less than the 90th percentile of the pos-
terior predictive distribution 90% of the time—a
notion referred to as calibrateduncertainty (Platt
1999). As the Bayesian framework centers
around subjective beliefs (Gelman 2009; Fortuin
2022)—encoding and updating them—it does
not yield such guarantees; in fact, such guaran-
tees are antithetical to the Bayesian paradigm
(Rubin 1984; Little 2006). In contrast, the fre-
quentist framework, discussed next, explicitly
seeks such guarantees.

Frequentist Uncertainty Quantification

The goal of frequentist uncertainty quantifica-
tion is to produce uncertainty estimates that sat-
isfy some probabilistic notion of correctness. As
an example, we will focus on conformal pre-
diction methods, which yield confidence sets
for test points that are guaranteed to contain
the true labels with high probability, for any
predictive model (Vovk et al. 2005; Angelopou-
los and Bates 2023). Such coverage guarantees
reliance on assumptions about the relationship
between the training and test data, such as being
exchangeable (e.g., independently and identical-
ly distributed) or related by way of particular
distribution shifts.

One basic intuition with which to under-
stand conformal prediction is that, if one has
“calibration data”—held-out validation data
from the same distribution as the test data—
then the prediction error on a test point comes
from the same distribution as the prediction er-
rors on the calibration data. Consequently, one
can obtain guarantees on the test error by assess-
ing the calibration errors. However, we may not
have access to such calibration data. Instead, for
any test input, we can consider each possible
value that its label could take on. For each such
candidate label, we ask whether the test input
paired with that candidate label together “look
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like” they come from the same distribution as the
training data, according to a frequentist hypoth-
esis test. If they do, then this value is included in
the confidence set for that test point. The confi-
dence set that comprises all such values gives
coverage: it contains the true test label with a
probability determined by the hypothesis test’s
significance level.

The argument thus far holds when the train-
ing and test data are from the same distribution,
or, more generally, exchangeable. Fannjiang
et al. (2022) extend this framework to obtain
coverage under feedback covariate shift, by de-
vising the appropriate hypothesis test, building
upon a recent body of work generalizing confor-
mal prediction to various distribution shifts
(Tibshirani et al. 2019; Cauchois et al. 2020;
Gibbs andCandes 2021; Podkopaev andRamdas
2021; Barber et al. 2023). Notably, the precise
feedback covariate shift that emerges in design
is dictated jointly by the design algorithm, pre-
dictive model, and training data. Consequently,
the confidence set for any given test protein de-
pends on the design algorithm, not just themod-

el and the training data. In contrast, a Bayesian
predictive posterior for any given test protein
depends on the model and training data but
not on the design algorithm (Fig. 2). Regardless,
similar to the Bayesian setting, the more the
training and design distributions differ, the larg-
er the confidence sets given by conformal pre-
diction, capturing the intuition that the predic-
tions should be more uncertain.

Coverage guarantees are non-asymptotic,
meaning they hold for any amount of training
data. However, coverage is not a guarantee on
the confidence set for any particular test protein
—indeed, such conditional coverage guarantees
are impossible without making strong assump-
tions about the sequence–property relationship
(Vovk 2012; Foygel Barber et al. 2021). Rather,
coverage describes what happens in expectation
over random draws of both the training and test
data from their respective distributions. Conse-
quently, it may not be appropriate to use these
methods to make choices about individual pro-
teins. Rather, these methods are potentially
most useful for selecting a design algorithm or

A BBayesian uncertainty Frequentist uncertainty

Designed protein

Predictive model
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Figure 2. Bayesian versus frequentist uncertainty quantification for design. A predictive model is fit to training
data (gray dots). A designed protein (black dot) is drawn from a design distribution; as two examples, here a
purple one and a green one are shown. Confidence intervals for the designed protein are shown with corre-
sponding colors. (A) Bayesian notions of uncertainty over a designed protein tend to increase further from the
training data, as shown by the distance between two standard deviations (dashed gray lines) above and below the
mean (solid gray line) of the posterior predictive distribution. Given a designed protein, this estimated uncer-
tainty does not changewith the design distribution: the confidence interval, determined by the dashed gray lines,
is the same whether it was designed by sampling from the green distribution or the purple distribution. (B) In
contrast, frequentist notions of uncertainty over a designed protein depend on the distribution it was drawn from.
In particular, the confidence interval produced by a conformal prediction method that accommodates distribu-
tion shift will generally be smaller if the protein was sampled from a distribution closer to (green), rather than
farther from (purple) the training distribution.
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its hyperparameters, as discussed in the next
section.

Density Ratio Estimation: An Important Tool
for Handling Distribution Shift

An additional limitation of conformal predic-
tion methods in the design setting is their reli-
ance on the density ratio between the training
and the designed input distributions—that is,
the ratio of the densities of these two distribu-
tions—to characterize the distribution shift
(Tibshirani et al. 2019; Fannjiang et al. 2022).
In fact, these ratios are also key to a panoply of
learning strategies that use them to reweight
training data to account for distribution shift
(Shimodaira 2000; Sugiyama et al. 2008; Bickel
et al. 2009; Gretton et al. 2009).

If both the training and design input distri-
butions have known closed-form densities, then
it is straightforward to compute this ratio. For
example, training sequences generated with li-
brary constructionprotocols suchas error-prone
polymerase chain reaction, degenerate codons,
or recombination (Neylon 2004) can be framed
as sampling from an explicit sequence distribu-
tion. Somedesign algorithmsalsoprescribe sam-
pling from a distribution with a closed-form
density, such as a Potts model (Russ et al. 2020;
Fram et al. 2023) or a library where parameters
have been set such that sequences with desir-
able predictions are more likely to be sampled
(Weinstein et al. 2022b; Zhu et al. 2022; Yang
et al. 2023). However, in general this is not the
case. For example, if training data comprise ho-
mologs, previously designed proteins, proteins
gathered from different literature sources, or
any combination thereof, then their distribution
does not have a closed-form density. Similarly,
most design algorithms only implicitly induce a
design distribution.

As a naive solution, one could estimate the
training and design distributions separately and
take the ratio of their densities. However, the
modeling choices that are best for estimating in-
dividual densitiesmaynotbe thebest forestimat-
ing ratios of different densities; in particular, this
approach does not account for the nature of how
the two distributions differ. Generally, estima-

tion of density ratios is statistically fragile in
that it becomes increasingly high-variance the
more the distributions differ, particularly given
the high dimensionality of protein sequence
space. The rich literature on density ratio estima-
tion presents a wealth of alternative strategies
mitigating this problem (Sugiyama et al. 2012),
which are ripe for further investigation in the
context ofmachine learning–baseddesign (Stan-
ton et al. 2023). These strategies learn parametric
forms of the density ratio by, for example, learn-
ing a classifier for distinguishing between sam-
ples from the two distributions (Qin 1998; Bickel
et al. 2009; Gutmann and Hyvärinen 2010), or
minimizing various objectives quantifying how
well the twodistributions agree, afteroneof them
is transformed by the density ratio estimate
(Huang et al. 2006; Sugiyama et al. 2008, 2012;
Gretton et al. 2009; Kanamori and Hido 2009;
Nguyen et al. 2010). These approaches explicitly
or implicitly learnwhich features aremost useful
for modeling the differences between the two
distributions, and which are irrelevant and can
be ignored. Consequently, they can bemore stat-
istically efficient than the naive approach based
on estimating the two densities separately.

Finally, a unique advantage of the design
setting is that one can generate as many in silico
designed sequences as desired for accurate den-
sity ratio estimation, provided the design algo-
rithm is not too computationally costly.

Uncertainty Quantification for Models of
Evolutionary Data

As afinal note, an open andunderexplored ques-
tion is how to best quantify uncertainty when
using the likelihoods of density models fit to
evolutionary data as property predictions. Be-
cause likelihood lives in entirely different units
fromthepropertyof interest and is thereforeonly
correlated with it at best, it is unclear what entity
one should quantify uncertainty for to facilitate
design. Riesselman et al. (2018) invoked Baye-
sian notions of uncertainty over the model pa-
rameters to improve the correlation between
likelihoods and property values. It might also
be fruitful to quantify notions of uncertainty
for this correlation, but it is not clear how a pro-
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tein engineer couldmake use of suchuncertainty
to improve design.

WHAT ARE THE DESIGN ALGORITHM
CONSIDERATIONS?

So far, we have discussed considerations for
learning a model whose predictions are as trust-
worthy as possible, and how to quantify its pre-
dictive uncertainty, particularly in the face of the
distribution shifts inducedbymachine learning–
based design.We nowdiscuss considerations for
choosing the design algorithm: the algorithm
that leverages the model and any associated un-
certainty to propose protein sequences to mea-
sure in the laboratory. These may be proposed
eitherasthefinalsetofdesignedproteinsaspiring
to achieve the desired novel condition, or to up-
date the predictivemodel in an iterativemanner.

As a concrete example, one simple design
algorithm is as follows: pick some initial protein
sequence; out of all possible single mutants of
this sequence, choose the one with the most de-
sirable predicted property value; and repeat this
step with the new mutant until a computational
budget is exhausted or the predictions suggest
that the desired condition has been achieved.
Alternatively, a design algorithm could entail
sampling from a generative model—conditional
or otherwise—that puts more weight on se-
quences with promising predicted property val-
ues (Brookes et al. 2019; Weinstein et al. 2022b;
Zhu et al. 2022), a densitymodel fit to homologs,
such as a Pottsmodel or variational autoencoder
(Russ et al. 2020; Hawkins-Hooker et al. 2021;
Framet al. 2023), ora pan-proteinmodel (Ferruz
et al. 2022; Madani et al. 2023). These examples
show that the design algorithm can be either
intertwined with or decoupled from the model.
Eitherway, thedesign algorithmdictates how the
design distribution will shift relative to the dis-
tribution of the training data. As such, how
should one select the design algorithm to have
the greatest chance of success?

Because design algorithms employed to seek
novel property values must consider sequence
space away from the training data, an inherent
trade-off arises between “exploration”—propos-
ing sequences whose predictions appear to meet

the desired condition but have high uncertainty,
versus “exploitation”—proposing sequences
with more confident but less promising predic-
tions. Fundamentally, novelty-seeking is about
navigating thisdilemmaas effectivelyaspossible.

Bayesian Optimization

Bayesian optimization is one richly studied
framework for tackling this dilemma in the con-
text of iterative rounds of design, so-called be-
cause the predictivemodel is updated in a Bayes-
ian manner after every round of data collection
(Snoek et al. 2012; Shahriari et al. 2016). Instan-
tiated in protein engineering terms, Bayesian op-
timization requires that one specify an acquisi-
tion function, a function over protein space
whose maximum dictates which protein should
be measured next in the laboratory. Acquisition
functions typically incorporate both a protein’s
predicted property and the associated uncertain-
ty. For example, the commonly used upper con-
fidence bound algorithm can be understood as
Bayesian optimization with an acquisition func-
tion comprising a weighted sum of the posterior
predictive mean and standard deviation, where
the weight is specified by the user and controls
the exploration–exploitation trade-off. After us-
ing an optimization algorithm to maximize the
acquisition function and identify which protein
to measure next in the laboratory, the new data
can be used to update the predictive model, and
the process is iterated. In batch Bayesian optimi-
zation, one can design protein libraries using an
acquisition function that is over a set of protein
sequences (Azimi et al. 2010; Shah and Ghahra-
mani 2015; Gonzalez et al. 2016;Wu and Frazier
2016; Daxberger and Low 2017; Yang et al.
2019b).

Bayesian optimization approaches, especial-
ly the upper confidence bound algorithm instan-
tiated with Gaussian process regression models
(GP-UCB), have been successfully used in a va-
riety of protein engineering campaigns (Romero
et al. 2013; Bedbrook et al. 2017, 2019; Green-
halgh et al. 2021; Rapp et al. 2023). Justifications
for the use of GP-UCB and its batched variants
sometimes invoke their theoretical properties,
such as efficient rates of convergence in finding
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the global optimum for many functions (Srini-
vas et al. 2010; Desautels et al. 2014). However, it
is unclear how practically informative such rates
are, particularly because protein engineers typi-
cally want to design proteins in as few rounds as
possible, aspirationally in just a single round.
Consequently, further analysis and development
of algorithms tailored specifically for the low- or
single-round setting could be fruitful (Chan et al.
2021).

The form of many common acquisition
functions assumes that the predictive model
yields a conditional density of the label given
the input, such as of the binding affinity to a
target molecule given the protein sequence.
However, when there is no assay-labeled data
to begin with, one often uses the likelihood of a
density model fit to homologous or pan-protein
data to instead rank proteins. In such cases, it
is not straightforward to instantiate common
acquisition functions. Moreover, maximizing
the acquisition function—which is not in general
concave or otherwise friendly to optimization—
is itself a nontrivial task (Wilson et al. 2018).
Finally, if one wants frequentist-style guarantees
on the output of the design algorithm, then
Bayesian optimizationmaynot be themost ame-
nable paradigm (although see Stanton et al.
(2023), who integrate the two by modulating
theBayesian predictive posteriorwith conformal
confidence sets). For any of these reasons, alter-
native design algorithms can be employed, dis-
cussed next.

Beyond Bayesian Optimization

A number of design algorithms that do not sub-
scribe to the Bayesian optimization paradigm
have been developed and used successfully.
Many of these can be framed as finding protein
sequences that optimize some sort of acquisition
function; however, because they do not involve
any update of the predictive model, Bayesian or
otherwise, they are neither performing Bayesian
optimization nor intended for multiround de-
sign. The goal of the “acquisition function” in
these approaches is to navigate the same explo-
ration–exploitation trade-off already discussed,
albeit in the setting where collected data will be

final and cannot be used to inform another
round of proposed proteins.

Such design algorithms include those that
sample designed proteins using an estimation
of distribution algorithm (Brookes et al. 2019,
2020; Fannjiang and Listgarten 2020), a black-
boxoptimization strategy that canbeused tofind
the parameters of a sequence distribution with,
say, maximal expected property value. Others
use gradient-based methods with differentiable
predictive models to design sequences with de-
sirable predicted values (Killoran et al. 2017; Bo-
gard et al. 2019), or start with an initial set of
proteins and iteratively introduce and accept
mutations based on their predicted property val-
ues (Fox et al. 2007; Sinai et al. 2020; Bryant et al.
2021). When mutations are chosen in a suitable
manner, the latter approach is equivalent to
Markov chain Monte Carlo sampling from
some distribution (Biswas et al. 2021). Although
these methods cannot be analyzed through the
theoretical lens of Bayesian optimization, one
can wrap frequentist formalisms for uncertainty
quantification around them to get guarantees on
the designed proteins’ property values. For ex-
ample, as mentioned in the previous section,
Fannjiang et al. (2022) generalize conformal pre-
diction to the setting of machine learning-based
design. By framing any design algorithm as a
mapping from training data to a design distribu-
tion—even if only implicitly—this method can
provide frequentist uncertainty guarantees for
the output of any combination of design algo-
rithm, predictive model, and (independently
and identically distributed) training data. This
flexibility means that one can incorporate what-
ever heuristics, intuitions, or constraints one de-
sires, such as various mechanisms for encourag-
ing designed sequences to remain in regions
where the predictive model is trusted (Brookes
et al. 2019; Linder et al. 2020; Biswas et al. 2021;
Framet al. 2023), and still obtain the same typeof
guarantees.

Although not the original motivation for
conformal prediction, these methods could be
used as a tool for design algorithm selection,
includinghow to set hyperparameters of adesign
algorithm in an informed manner. For example,
many design algorithms have a hyperparameter
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that can be thought of as navigating the explora-
tion–exploitation trade-off. Common examples
include a “temperature” hyperparameter that
controls the entropy of the design distribution
(Russ et al. 2020; Biswas et al. 2021; Zhu et al.
2022), and a prediction threshold hyperpa-
rameter in genetic algorithms (Sinai et al. 2020).
In general, it is unclear how to set these and other
hyperparameters. However, the tool of confor-
mal prediction can help one gauge how different
values of the hyperparameter trade-off between
desirable but conflicting goals—for example, the
trade-off between how high the average predict-
ed value is, and frequentist uncertainty about the
predictions. Plotting such trade-offs can guide
protein engineers in selecting a hyperparameter
value that they believe achieves an acceptable
point on the trade-off, or multiple such values
to achieve a risk portfolio (Fig. 3).

As onemoves along the trade-off in Figure 3,
not only do the predicted property values and
their uncertainties change, but also the diver-
sity of the designed sequences: the smaller the
value of the hyperparameter, the greater the
entropy of the design distribution. We next dis-
cuss the topic of sequence diversity in protein
design.

Should Sequence Diversity Be an Explicit
Consideration?

In any setting where a batch of sequences, rather
than just a single sequence, is designed at once, a
common concern might be how to propose a
sufficiently diverse set of sequences so as tomax-
imize the chance of achieving the desired con-
dition. It turns out that this explicit goal of pro-
posing a diverse set of sequences is often beside
the point. If the real goal is to achieve novel
property values,2 then, provided there is a suit-
able notion of uncertainty for the property pre-
dictions, choosing sequences in a way that ac-
counts for that uncertainty is the principled
strategy for exploring sequence space. For exam-

ple, in the batch Bayesian optimization setting,
diversity is effectively baked into the acquisition
function. Once the acquisition function has
been decided, it implicitly determines the ap-
propriate notion of diversity in the resulting
proposed batch of sequences. Analogously, if
one uses conformal prediction to select hyper-
parameter settings to navigate the exploration–
exploitation trade-off (Fig. 3), then the appro-
priate notion of sequence diversity is dictated by
the selected hyperparameter value. From these
two examples, we see that in a design framework
that sensibly accounts for the user’s notion of
uncertainty about the property predictions, the
correspondingly appropriate notion of sequence
diversity emerges naturally.
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Figure 3. Design algorithm hyperparameter selection
with conformal prediction. The “inverse tempera-
ture” hyperparameter, λ, controls the entropy of the
design distribution (higher values lead to lower entro-
py). Higher values also correspond to higher average
predicted property values (x-axis) and greater predic-
tive uncertainty on the designed proteins, as mea-
sured by the width of confidence intervals produced
by conformal prediction (y-axis, higher is more un-
certain). Two different protein design goals are
shown, for achieving brighter red and blue fluores-
cence (red and blue lines). One can access higher
predicted brightness for blue fluorescence without
incurring as much predictive uncertainty, compared
to red fluorescence (i.e., the blue line is less steep than
the red line). One explanation for this difference is
that replicate measurements from the red fluores-
cence assay in Poelwijk et al. (2019) are noisier and
hence inherently harder to predict. (Figure reprinted
from Fannjiang et al. 2022, courtesy of the authors
© 2022; published by PNAS.)

2In contrast, as noted in the introduction, if the goal is to
find proteinswith novel sequences—but not necessarily nov-
el properties—then sequence diversity must be explicitly
considered.
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As just described, ideally the design algo-
rithm accounts for predictive uncertainty such
that it implicitly yields an effective notion of se-
quencediversity.However, inpractice, theremay
not be a clear notion of predictive uncertainty
that can be leveraged—for example, when using
the likelihoods of a density model fit to evolu-
tionary data to rank protein sequences. It is in
such cases, or when one is unsure of what uncer-
tainty quantification approach to use, but finds
notions of sequence diversity easier to specify,
that it may be effective to introduce property-
agnostic sequence diversity metrics into the de-
sign algorithm. Examples include the entropy of
the designed sequence distribution orHamming
or BLOSUM-based distances between protein
sequences (Angermueller et al. 2020; Linder
et al. 2020). Furthermore, one might consider
generalizing such distances to account for high-
er-order interactions between sequence posi-
tions, or otherwise incorporate knowledge about
the sequence–property relationship into the
metric. As a side note, one should not use entro-
py to assess the diversityof afinite set of sequenc-
es, as the entropy of any set of unique sequences
is the same regardless of how different they are
from each other.

PREDICTION AND UNCERTAINTY ABOUT
THE FUTURE OF MACHINE LEARNING–
BASED PROTEIN DESIGN

With the recent rise of large models for “design-
ing” written compositions and images with as-
tonishing quality and apparent novelty, protein
engineers have been motivated to try to follow a
similar path by training models on large and
diverse sets of protein sequences and/or struc-
tures. Will such efforts mean that the challenges
discussed herein will soon become irrelevant?
Important distinctions exist between the setting
of protein design and that of language and image
generation, although the practical implications
of such distinctions remain to be seen. Still, let us
consider them.

In large language models and their corre-
sponding dialogue systems (OpenAI 2023), the
training data, queries, and outputs all live in the
same space: they are all instantiated in terms of

language tokens, or, roughly, words. Corre-
spondingly, the information that the model
needs can be extracted entirely from textual
data. Now consider a similar type of model,
trained only on protein sequences and no other
information. Could such a model know which
proteins fluoresce at a particular wavelength
with a particular brightness? No, that informa-
tion lies in a space unfamiliar to themodel—that
of real-valued wavelength and brightness, not
sequence. The fact that the number of known
natural protein sequences is steadily rising be-
cause of plummeting sequencing costs does not
reveal this information. For a model to know
about the biochemical and biophysical proper-
ties of any given sequence, information from
this space, such as measurements from labora-
tory experiments—a different modality alto-
gether—must also be provided to the model
during training. Databases of natural protein
sequences do contain (mostly qualitative) anno-
tations about biophysical and biochemical prop-
erties, but the quality of such annotations varies
greatly. Although some are from published ex-
periments, many are based on heuristics such as
propagating annotations from similar sequenc-
es, which can be error-prone in a way not atten-
uated by scale (Brenner 1999; Schnoes et al.
2009; Radivojac et al. 2013). Consequently, fully
automated protein design is currently bottle-
necked by a lack of informative data from the
relevant space. These data could come from lab-
oratory experiments, or sufficiently accurate
predictive models or simulations thereof.

In recent work, Madani et al. (2023) incor-
porated annotations from a variety of sources
into training a pan-protein generative model,
and then conditioned on protein family annota-
tions based on sequence homology (Finn et al.
2016) to generate functional proteins from spe-
cific families. However, they also fine-tuned the
model on abundant homologous sequences
from those families. Notably, when such homol-
ogous sequences are available, functional pro-
teins have been successfully designed without
access to pan-protein data (Russ et al. 2020;
Hawkins-Hooker et al. 2021; Repecka et al.
2021; Fram et al. 2023). Although Madani et al.
(2023) find that a particular family-specific
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method (Figliuzzi et al. 2018;Russ et al. 2020)did
not yield functional proteins for their families of
interest, we discussed earlier how the relative
performance of pan-protein and family-specific
methods varies dramatically across protein fam-
ilies (Fig. 1). Until we better understand the fac-
tors that drive this variation, general advantages
of theuseofpan-proteindata andmodels remain
unclear.

Even if there should eventually be enough
annotated sequence data to mimic the successes
of large, multimodal models on images and text,
there remains aquestionofhowwell suchmodels
could achievenovel property values, or “radically
novel” properties altogether. Claims of dialogue
agents exhibiting “emergent behaviors” suggest
that thesemodelsmay be capable of finding nov-
elty, although such claims have also been ques-
tioned (Schaeffer et al. 2023) because of the fact
that emergent behavior has not been well-de-
fined at a technical level. Consequently, it is dif-
ficult to reason about how relevant these sup-
posed emergent behaviors are to the world of
proteindesign. Letus seewhat emerges—wecan-
not predict the future!

AUTHOR CONTRIBUTIONS

Whatever you agree with, C.F. wrote. Whatever
you disagree with, J.L. wrote.

ACKNOWLEDGMENTS

We are grateful to Akosua Busia, Albert Fann-
jiang, Hanlun Jiang, Hunter Nisonoff, and Mi-
cah Olivas for providing compelling feedback
and literature pointers.

REFERENCES

Acker MG, Auld DS. 2014. Considerations for the design
and reporting of enzyme assays in high-throughput
screening applications. Perspect Sci 1: 56–73. doi:10
.1016/j.pisc.2013.12.001

Aghazadeh A, Nisonoff H, Ocal O, Brookes DH, Huang Y,
Koyluoglu OO, Listgarten J, Ramchandran K. 2021. Ep-
istatic net allows the sparse spectral regularization of deep
neural networks for inferring fitness functions.Nat Com-
mun 12: 5225. doi:10.1038/s41467-021-25371-3

Alley EC, Khimulya G, Biswas S, AlQuraishiM, ChurchGM.
2019.Unified rational protein engineeringwith sequence-

based deep representation learning. Nat Methods 16:
1315–1322. doi:10.1038/s41592-019-0598-1

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z,
Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-
BLAST: a new generation of protein database search pro-
grams.Nucleic Acids Res 25: 3389–3402. doi:10.1093/nar/
25.17.3389

Angelopoulos AN, Bates S. 2023. Conformal prediction: a
gentle introduction. Found Trends Mach Learn 16: 494–
591. doi:10.1561/2200000101

Angermueller C, Belanger D, Gane A, Mariet Z, Dohan D,
Murphy K, Colwell L, Sculley D. 2020. Population-based
black-box optimization for biological sequence design.
PMLR 119: 324–334.

Arnold FH. 2018. Directed evolution: bringing new chemis-
try to life.Angew Chem Int Ed Engl 57: 4143–4148. doi:10
.1002/anie.201708408

Azimi J, Fern A, Fern X. 2010. Batch Bayesian optimization
via simulation matching. Adv Neural Inf Process Syst
https://proceedings.neurips.cc/paper/2010/hash/e702e51
da2c0f5be4dd354bb3e295d37-Abstract.html

Ballal A, Laurendon C, Salmon M, Vardakou M, Cheema J,
Defernez M, O’Maille PE, Morozov AV. 2020. Sparse ep-
istatic patterns in the evolution of terpene synthases.Mol
Biol Evol 37: 1907–1924. doi:10.1093/molbev/msaa052

Barber RF, Candes EJ, Ramdas A, Tibshirani RJ. 2023. Con-
formal prediction beyond exchangeability.Ann Statist 51:
816–845.

Bedbrook CN, Yang KK, Rice AJ, Gradinaru V, Arnold FH.
2017. Machine learning to design integral membrane
channelrhodopsins for efficient eukaryotic expression
and plasma membrane localization. PLoS Comput Biol
13: e1005786. doi:10.1371/journal.pcbi.1005786

Bedbrook CN, Yang KK, Robinson JE, Mackey ED, Gradi-
naruV, Arnold FH. 2019.Machine learning-guided chan-
nelrhodopsin engineering enablesminimally invasive op-
togenetics. Nat Methods 16: 1176–1184. doi:10.1038/
s41592-019-0583-8

Bickel S, BrucknerM, Scheffer T. 2009. Discriminative learn-
ing under covariate shift. J Mach Learn Res 10: 2137–
2155.

Bishop CM. 2007. Pattern recognition andmachine learning.
Springer, New York.

Biswas S, Khimulya G, Alley EC, Esvelt KM, Church GM.
2021. Low-N protein engineering with data-efficient deep
learning. Nat Methods 18: 389–396. doi:10.1038/s41592-
021-01100-y

Bogard N, Linder J, Rosenberg AB, Seelig G. 2019. A deep
neural network for predicting and engineering alternative
polyadenylation. Cell 178: 91–106.e23. doi:10.1016/j.cell
.2019.04.046

Brenner SE. 1999. Errors in genome annotation. Trends Ge-
net 15: 132–133. doi:10.1016/S0168-9525(99)01706-0

BrookesD, ParkH, Listgarten J. 2019. Conditioning by adap-
tive sampling for robust design. PMLR 97: 773–782.

Brookes D, Busia A, Fannjiang C, Murphy K, Listgarten J.
2020. A view of estimation of distribution algorithms
through the lens of expectation-maximization. In Pro-
ceedings of the 2020 Genetic and Evolutionary Computa-
tion Conference Companion, GECCO ’20, pp. 189–190.
Association for Computing Machinery, New York.

C. Fannjiang and J. Listgarten

16 Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a041469

Spring Harbor Laboratory Press 
 at F. HOFFMANN-LA ROCHE LTD on February 13, 2025 - Published by Coldhttp://cshperspectives.cshlp.org/Downloaded from 



Brookes DH, Aghazadeh A, Listgarten J. 2022. On the spar-
sity of fitness functions and implications for learning.
Proc Natl Acad Sci 119: e2109649118. doi:10.1073/pnas
.2109649118

Bryant DH, Bashir A, Sinai S, Jain NK, Ogden PJ, Riley PF,
Church GM, Colwell LJ, Kelsic ED. 2021. Deep diversifica-
tion of an AAV capsid protein by machine learning. Nat
Biotechnol 39: 691–696. doi:10.1038/s41587-020-00793-4

Busia A, Listgarten J. 2023. MBE: model-based enrichment
estimation and prediction for differential sequencing
data. Genome Biol 24: 218.

Cauchois M, Gupta S, Ali A, Duchi JC. 2020. Robust valida-
tion: confident predictions even when distributions shift.
arXiv [statML]. http://arxiv.org/abs/2008.04267

Chan J, Pacchiano A, Tripuraneni N, Song YS, Bartlett P,
Jordan MI. 2021. Parallelizing contextual linear bandits.
arXiv [statML]. http://arxiv.org/abs/2105.10590

Cheng RR, Nordesjö O, Hayes RL, Levine H, Flores SC,
Onuchic JN, Morcos F. 2016. Connecting the sequence-
space of bacterial signaling proteins to phenotypes using
coevolutionary landscapes.Mol Biol Evol 33: 3054–3064.
doi:10.1093/molbev/msw188

Choi K, Meng C, Song Y, Ermon S. 2022. Density ratio
estimation via infinitesimal classification. PMLR 151:
2552–2573.

Cohen T,WellingM. 2016. Group equivariant convolutional
networks. PMLR 48: 2990–2999.

Correia BE, Bates JT, Loomis RJ, Baneyx G, Carrico C, Jar-
dine JG, Rupert P, Correnti C, Kalyuzhniy O, Vittal V, et
al. 2014. Proof of principle for epitope-focused vaccine
design. Nature 507: 201–206. doi:10.1038/nature12966

Cortes C, Mansour Y, Mohri M. 2010. Learning bounds for
importance weighting. InAdvances in neural information
processing systems 23 (ed. Lafferty JD, et al.), pp. 442–450.
Curran Associates, Red Hook, NY.

Dauparas J, Anishchenko I, Bennett N, Bai H, Ragotte RJ,
Milles LF,WickyBIM,CourbetA, deHaas RJ, BethelN, et
al. 2022. Robust deep learning-based protein sequence
design using ProteinMPNN. Science 378: 49–56. doi:10
.1126/science.add2187

Daxberger EA, Low BKH. 2017. Distributed batch Gaussian
process optimization. PMLR 70: 951–960.

Desautels T, Krause A, Burdick JW. 2014. Parallelizing ex-
ploration-exploitation tradeoffs in Gaussian process ban-
dit optimization. J Mach Learn Res 15: 4053–4103.

DingD. 2022. Independentmutation effects enable design of
combinatorial protein binding mutants. bioRxiv doi:10
.1101/2022.10.31.514613

Erginbas YE, Kang JS, Aghazadeh A, Ramchandran K. 2023.
Efficiently computing sparse fourier transforms of q-ary
functions. arXiv [eessSP]. http://arxiv.org/abs/2301.06200

Faheem M, Heyden A. 2014. Hybrid quantum mechanics/
molecular mechanics solvation scheme for computing
free energies of reactions at metal-water interfaces. J
Chem Theory Comput 10: 3354–3368. doi:10.1021/
ct500211w

Fannjiang C, Listgarten J. 2020. Autofocused oracles for
model-based design. In Advances in neural information
processing systems (ed. Larochelle H, et al.), Vol. 33, pp.
12945–12956. Curran Associates, Red Hook, NY.

Fannjiang C, Bates S, Angelopoulos AN, Listgarten J, Jordan
MI. 2022. Conformal prediction under feedback covariate
shift for biomolecular design. Proc Natl Acad Sci 119:
e2204569119. doi:10.1073/pnas.2204569119

Ferruz N, Schmidt S, Höcker B. 2022. ProtGPT2 is a deep
unsupervised language model for protein design. Nat
Commun 13: 4348. doi:10.1038/s41467-022-32007-7

Figliuzzi M, Jacquier H, Schug A, Tenaillon O, Weigt M.
2016. Coevolutionary landscape inference and the con-
text-dependence of mutations in beta-lactamase TEM-1.
Mol Biol Evol 33: 268–280. doi:10.1093/molbev/msv211

FigliuzziM, Barrat-Charlaix P,WeigtM. 2018.Howpairwise
coevolutionary models capture the collective residue var-
iability in proteins? Mol Biol Evol 35: 1018–1027. doi:10
.1093/molbev/msy007

Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitch-
ell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas
A, et al. 2016. The Pfam protein families database: to-
wards a more sustainable future. Nucleic Acids Res 44:
D279–D285. doi:10.1093/nar/gkv1344

Fortuin V. 2022. Priors in Bayesian deep learning: a review.
Int Stat Rev 90: 563–591. doi:10.1111/insr.12502

Fowler DM, Fields S. 2014. Deepmutational scanning: a new
style of protein science. Nat Methods 11: 801–807. doi:10
.1038/nmeth.3027

Fowler DM, Araya CL, Gerard W, Fields S. 2011. Enrich:
software for analysis of protein function by enrichment
and depletion of variants. Bioinformatics 27: 3430–3431.
doi:10.1093/bioinformatics/btr577

Fox RJ, Davis SC, Mundorff EC, Newman LM, Gavrilovic V,
Ma SK, Chung LM, Ching C, Tam S, Muley S, et al. 2007.
Improving catalytic function by ProSAR-driven enzyme
evolution. Nat Biotechnol 25: 338–344. doi:10.1038/
nbt1286

Foygel Barber R, Candès EJ, Ramdas A, Tibshirani RJ. 2021.
The limits of distribution-free conditional predictive in-
ference. Inf Inference 10: 455–482. doi:10.1093/imaiai/
iaaa017

Fram B, Truebridge I, Su Y, Riesselman AJ, Ingraham JB,
Passera A, Napier E, Thadani NN, Lim S, Roberts K, et al.
2023. Simultaneous enhancement of multiple functional
properties using evolution-informed protein design. bio-
Rxiv doi:10.1101/2023.05.09.539914

Frazer J, Notin P, DiasM, Gomez A,Min JK, Brock K, Gal Y,
Marks DS. 2021. Disease variant prediction with deep
generative models of evolutionary data. Nature 599: 91–
95. doi:10.1038/s41586-021-04043-8

Gal Y. 2016. “Uncertainty in deep learning.” PhD thesis,
University of Cambridge, Cambridge.

Gao J, Truhlar DG. 2002. Quantummechanical methods for
enzyme kinetics. Annu Rev Phys Chem 53: 467–505.
doi:10.1146/annurev.physchem.53.091301.150114

Geiger M, Smidt T. 2022. E3nn: Euclidean neural networks.
arXiv doi:10.48550/arXiv.2207.09453

Gelman A. 2009. Bayes, jeffreys, prior distributions and the
philosophy of statistics. Stat Sci 24: 176–178. doi:10.1214/
09-STS284D

Geman S, Bienenstock E, Doursat R. 1992. Neural networks
and the bias/variance dilemma. Neural Comput 4: 1–58.
doi:10.1162/neco.1992.4.1.1

Designing Proteins with Novel Property Values

Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a041469 17

Spring Harbor Laboratory Press 
 at F. HOFFMANN-LA ROCHE LTD on February 13, 2025 - Published by Coldhttp://cshperspectives.cshlp.org/Downloaded from 



Gibbs I, Candes E. 2021. Adaptive conformal inference un-
der distribution shift. Adv Neural Inf Process Syst 34:
1660–1672.

Gonzalez J, Dai Z, Hennig P, Lawrence N. 2016. Batch Baye-
sian optimization via local penalization. PMLR 51: 648–
657.

Greenhalgh JC, Fahlberg SA, Pfleger BF, Romero PA. 2021.
Machine learning-guided acyl-ACP reductase engineer-
ing for improved in vivo fatty alcohol production. Nat
Commun 12: 5825. doi:10.1038/s41467-021-25831-w

Grenander U. 1952. On empirical spectral analysis of sto-
chastic processes.Arkiv för Matematik 1: 503–531. doi:10
.1007/BF02591360

Gretton A, Smola A, Huang J, Schmittfull M, Borgwardt K,
Schölkopf B. 2009. Covariate shift by kernel meanmatch-
ing. In Dataset shift in machine learning. MIT Press,
Cambridge, MA.

Grover A, Song J, Kapoor A, Tran K, Agarwal A, Horvitz EJ,
Ermon S. 2019. Bias correction of learned generative
models using likelihood-free importance weighting. In
Advances in neural information processing systems 32
(ed. Wallach H, et al.), pp. 11056–11068. Curran Associ-
ates, Red Hook, NY.

Gutmann M, Hyvärinen A. 2010. Noise-contrastive estima-
tion: a new estimation principle for unnormalized statis-
tical models. PMLR 9: 297–304.

Hastie T, Friedman J, Tibshirani R. 2001. The elements of
statistical learning. Springer, New York.

Hawkins-Hooker A, Depardieu F, Baur S, Couairon G, Chen
A, BikardD. 2021. Generating functional protein variants
with variational autoencoders. PLoS Comput Biol 17:
e1008736. doi:10.1371/journal.pcbi.1008736

Hesslow D, Zanichelli N, Notin P, Poli I, Marks D. 2022.
RITA: a study on scaling up generative protein sequence
models. arXiv doi:10.48550/arXiv.2205.05789

Hopf TA, Ingraham JB, Poelwijk FJ, Schärfe CPI, Springer
M, Sander C, Marks DS. 2017. Mutation effects predicted
from sequence co-variation. Nat Biotechnol 35: 128–135.
doi:10.1038/nbt.3769

Hsu C, Nisonoff H, Fannjiang C, Listgarten J. 2022a. Learn-
ing protein fitness models from evolutionary and assay-
labeled data. Nat Biotechnol 40: 1114–1122. doi:10.1038/
s41587-021-01146-5

Hsu C, Verkuil R, Liu J, Lin Z, Hie B, Sercu T, Lerer A, Rives
A. 2022b. Learning inverse folding from millions of pre-
dicted structures. PMLR 162: 8946–8970.

Huang J, Gretton A, Borgwardt K, Schölkopf B, Smola A.
2006. Correcting sample selection bias by unlabeled data.
Adv Neural Inf Process Syst 19: 601–608.

Ingraham J, Garg V, Barzilay R, Jaakkola T. 2019. Generative
models for graph-based protein design. In Advances in
neural information processing systems (ed. Wallach H, et
al.), Vol. 32. Curran Associates, Red Hook, NY.

Ingraham J, BaranovM, Costello Z, Frappier V, Ismail A, Tie
S, Wang W, Xue V, Obermeyer F, Beam A, et al. 2022.
Illuminating protein space with a programmable genera-
tive model. bioRxiv doi:10.1101/2022.12.01.518682

Jagota M, Ye C, Albors C, Rastogi R, Koehl A, Ioannidis N,
Song YS. 2023. Cross-protein transfer learning substan-
tially improves disease variant prediction. Genome Biol
24: 182.

Jing B, Eismann S, Suriana P, Townshend RJL, Dror R. 2021.
Learning from protein structure with geometric vector
perceptrons. 9th International Conference on Learning
Representations. https://openreview.net/forum?id=1YLJD
vSx6J4

Johnson LS, Eddy SR, Portugaly E. 2010. Hidden Markov
model speed heuristic and iterative HMM search proce-
dure. BMC Bioinformatics 11: 431. doi:10.1186/1471-
2105-11-431

Kanamori T, Hido S. 2009. A least-squares approach to di-
rect importance estimation. J Mach Learn Res 10: 1391–
1445.

Killoran N, Lee LJ, Delong A, Duvenaud D, Frey BJ. 2017.
Generating and designing DNA with deep generative
models. arXiv doi:10.48550/arXiv.1604.04173

Kiureghian AD, Ditlevsen O. 2009. Aleatory or epistemic?
Does it matter? Struct Saf 31: 105–112. doi:10.1016/j
.strusafe.2008.06.020

Kuhlman B, Bradley P. 2019. Advances in protein structure
prediction and design.Nat RevMol Cell Biol 20: 681–697.
doi:10.1038/s41580-019-0163-x

Laine E, Karami Y, Carbone A. 2019. GEMME: a simple and
fast global epistatic model predicting mutational effects.
Mol Biol Evol 36: 2604–2619. doi:10.1093/molbev/
msz179

Linder J, Bogard N, Rosenberg AB, Seelig G. 2020. A gener-
ative neural network for maximizing fitness and diversity
of synthetic DNA and protein sequences.Cell Syst 11: 49–
62.e16. doi:10.1016/j.cels.2020.05.007

Little RJ. 2006. Calibrated bayes: a bayes/frequentist roadmap.
Am Stat 60: 213–223. doi:10.1198/000313006X117837

Madani A,McCann B, Naik N, Keskar NS, AnandN, Eguchi
RR, Huang PS, Socher R. 2020. Progen: language model-
ing for protein generation. bioRxiv doi:10.48550/arXiv
.2004.03497

Madani A, Krause B, Greene ER, Subramanian S, Mohr BP,
Holton JM, Olmos JL, Xiong C, Sun ZZ, Socher R, et al.
2023. Large language models generate functional protein
sequences across diverse families.Nat Biotechnol 41: 1099–
1106. doi:10.1038/s41587-022-01618-2; http://paperpile
.com/b/Xd89E6/AtYM

Malbranke C, Bikard D, Cocco S, Monasson R, Tubiana J.
2023.Machine learning for evolutionary-based and phys-
ics-inspired protein design: current and future synergies.
Curr Opin Struct Biol 80: 102571. doi:10.1016/j.sbi.2023
.102571

Markin CJ, Mokhtari DA, Sunden F, Appel MJ, Akiva E,
Longwell SA, Sabatti C, Herschlag D, Fordyce PM. 2021.
Revealing enzyme functional architecture via high-
throughput microfluidic enzyme kinetics. Science 373:
eabf8761. doi:10.1126/science.abf8761

Meier J, Rao R, Verkuil R, Liu J, Sercu T, Rives A. 2021.
Language models enable zero-shot prediction of the ef-
fects of mutations on protein function. Adv Neural Inf
Process Syst 34: 29287–29303.

Neal RM. 1996. Bayesian learning for neural networks.
Springer, New York.

Neylon C. 2004. Chemical and biochemical strategies for
the randomization of protein encoding DNA sequences:
library construction methods for directed evolution. Nu-
cleic Acids Res 32: 1448–1459. doi:10.1093/nar/gkh315

C. Fannjiang and J. Listgarten

18 Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a041469

Spring Harbor Laboratory Press 
 at F. HOFFMANN-LA ROCHE LTD on February 13, 2025 - Published by Coldhttp://cshperspectives.cshlp.org/Downloaded from 



Nguyen X, Wainwright MJ, Jordan M. 2010. Estimating di-
vergence functionals and the likelihood ratio by convex
risk minimization. IEEE Trans Inf Theory 56: 5847–5861.

Nijkamp E, Ruffolo J, Weinstein EN, Naik N, Madani A.
2022. Progen2: exploring the boundaries of protein lan-
guage models. arXiv doi:10.48550/arXiv.2206.13517

Nisonoff H, Wang Y, Listgarten J. 2022. Augmenting neural
networks with priors on function values. arXiv doi:10
.48550/arXiv.2202.04798

Norn C, Wicky BIM, Juergens D, Liu S, Kim D, Tischer D,
Koepnick B, Anishchenko I, Players F, Baker D, et al.
2021. Protein sequence design by conformational land-
scape optimization. Proc Natl Acad Sci 118: e2017228118.
doi:10.1073/pnas.2017228118

Notin P, Dias M, Frazer J, Hurtado JM, Gomez AN, Marks
D, Gal Y. 2022a. Tranception: protein fitness prediction
with autoregressive transformers and inference-time re-
trieval. PMLR 162: 16990–17017.

Notin P, VanNiekerk L, KollaschAW, RitterD, Gal Y,Marks
DS. 2022b. TranceptEVE: combining family-specific and
family-agnostic models of protein sequences for im-
proved fitness prediction. bioRxiv doi:10.1101/2022.12
.07.519495

OpenAI. 2023. GPT-4 technical report. arXiv doi:10.48550/
arXiv.2303.08774

Otwinowski J, McCandlish DM, Plotkin JB. 2018. Inferring
the shape of global epistasis. Proc Natl Acad Sci 115:
E7550–E7558. doi:10.1073/pnas.1804015115

Ovchinnikov S, Huang PS. 2021. Structure-based protein
design with deep learning. Curr Opin Chem Biol 65:
136–144. doi:10.1016/j.cbpa.2021.08.004

Pan X, Kortemme T. 2021. Recent advances in de novo pro-
tein design: principles, methods, and applications. J Biol
Chem 296: 100558. doi:10.1016/j.jbc.2021.100558

Pearson WR. 2013. An introduction to sequence similarity
(“homology”) searching. Curr Protoc Bioinformatics 42:
3.1.1–3.1.8. doi:10.1002/0471250953.bi0301s42

Platt J. 1999. Probabilistic outputs for support vector ma-
chines and comparisons to regularized likelihood meth-
ods. Adv Large Margin Class 10: 61–74.

Podkopaev A, Ramdas A. 2021. Distribution-free uncertain-
ty quantification for classification under label shift. PMLR
161: 844–853.

Poelwijk FJ, Socolich M, Ranganathan R. 2019. Learning the
pattern of epistasis linking genotype and phenotype in a
protein.Nat Commun 10: 4213. doi:10.1038/s41467-019-
12130-8

Posani L, Rizzato F,MonassonR, Cocco S. 2023. Infer global,
predict local: quantity-relevance trade-off in protein fit-
ness predictions from sequence data. PLoS Comput Biol
19: e1011521. doi:10.1371/journal.pcbi.1011521

Qin J. 1998. Inferences for case-control and semiparametric
two-sample density ratio models. Biometrika 85: 619–
630. doi:10.1093/biomet/85.3.619

Qin C, Colwell LJ. 2018. Power law tails in phylogenetic
systems. Proc Natl Acad Sci 115: 690–695. doi:10.1073/
pnas.1711913115

Radivojac P, Clark WT, Oron TR, Schnoes AM, Wittkop T,
Sokolov A, Graim K, Funk C, Verspoor K, Ben-Hur A, et
al. 2013. A large-scale evaluation of computational pro-

tein function prediction. Nat Methods 10: 221–227.
doi:10.1038/nmeth.2340

Rapp JT, Bremer BJ, Romero PA. 2023. Self-driving labora-
tories to autonomously navigate the protein fitness land-
scape. bioRxiv doi:10.1101/2023.05.20.541582

Repecka D, Jauniskis V, Karpus L, Rembeza E, Rokaitis I,
Zrimec J, Poviloniene S, Laurynenas A, Viknander S,
Abuajwa W, et al. 2021. Expanding functional protein
sequence spaces using generative adversarial networks.
Nat Mach Intell 3: 324–333. doi:10.1038/s42256-021-
00310-5

Rhodes B, Xu K, Gutmann MU. 2020. Telescoping density-
ratio estimation. Adv Neural Inf Process Syst 33: 4905–
4916.

Riesselman AJ, Ingraham JB, Marks DS. 2018. Deep gener-
ative models of genetic variation capture the effects of
mutations. Nat Methods 15: 816–822. doi:10.1038/
s41592-018-0138-4

Romero PA, Arnold FH. 2009. Exploring protein fitness
landscapes by directed evolution. Nat Rev Mol Cell Biol
10: 866–876. doi:10.1038/nrm2805

Romero PA, Krause A, Arnold FH. 2013. Navigating
the protein fitness landscape with Gaussian processes.
Proc Natl Acad Sci 110: E193–E201. doi:10.1073/pnas
.1215251110

Rubin DB. 1984. Bayesianly justifiable and relevant frequen-
cy calculations for the applied statistician. Ann Statist 12:
1151–1172. doi:10.1214/aos/1176346785

Rubin AF, Gelman H, Lucas N, Bajjalieh SM, Papenfuss AT,
Speed TP, Fowler DM. 2017. A statistical framework for
analyzing deep mutational scanning data. Genome Biol
18: 150. doi:10.1186/s13059-017-1272-5

RussWP, FigliuzziM, Stocker C, Barrat-Charlaix P, Socolich
M, Kast P, Hilvert D, Monasson R, Cocco S, Weigt M, et
al. 2020. An evolution-based model for designing choris-
mate mutase enzymes. Science 369: 440–445. doi:10
.1126/science.aba3304

Sailer ZR, Harms MJ. 2017. Detecting high-order epistasis
in nonlinear genotype-phenotype maps. Genetics 205:
1079–1088. doi:10.1534/genetics.116.195214

Schaeffer R, Miranda B, Koyejo S. 2023. Are emergent abil-
ities of large language models a mirage? arXiv doi:10
.48550/arXiv.2304.15004

Schnoes AM, Brown SD, Dodevski I, Babbitt PC. 2009. An-
notation error in public databases: misannotation of mo-
lecular function in enzyme superfamilies. PLoS Comput
Biol 5: e1000605. doi:10.1371/journal.pcbi.1000605

Sesterhenn F, Yang C, Bonet J, Cramer JT, Wen X, Wang Y,
Chiang CI, Abriata LA, Kucharska I, Castoro G, et al.
2020. De novo protein design enables the precise induc-
tion of RSV-neutralizing antibodies. Science 368:
eaay5051. doi:10.1126/science.aay5051

Shah A, Ghahramani Z. 2015. Parallel predictive entropy
search for batch global optimization of expensive objec-
tive functions.Adv Neural Inf Process Syst 28: 3330–3338.

Shahriari B, Swersky K, Wang Z, Adams RP, de Freitas N.
2016. Taking the human out of the loop: a review of
Bayesian optimization. Proc IEEE 104: 148–175. doi:10
.1109/JPROC.2015.2494218

Shimodaira H. 2000. Improving predictive inference under
covariate shift by weighting the log-likelihood function. J

Designing Proteins with Novel Property Values

Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a041469 19

Spring Harbor Laboratory Press 
 at F. HOFFMANN-LA ROCHE LTD on February 13, 2025 - Published by Coldhttp://cshperspectives.cshlp.org/Downloaded from 



Stat Plan Inference 90: 227–244. doi:10.1016/S0378-3758
(00)00115-4

Shin JE, Riesselman AJ, Kollasch AW, McMahon C, Simon
E, Sander C, Manglik A, Kruse AC, Marks DS. 2021.
Protein design and variant prediction using autoregres-
sive generative models. Nat Commun 12: 2403. doi:10
.1038/s41467-021-22732-w

Sinai S, Wang R, Whatley A, Slocum S, Locane E, Kelsic ED.
2020. Adalead: a simple and robust adaptive greedy search
algorithm for sequence design. arXiv doi:10.48550/arXiv
.2010.02141

Snoek J, Larochelle H, Adams RP. 2012. Practical Bayesian
optimization of machine learning algorithms. In Ad-
vances in neural information processing systems (ed. Per-
eira F, et al.), Vol. 25. Curran Associates, Red Hook, NY.

SongH, Bremer BJ, Hinds EC, Raskutti G, Romero PA. 2021.
Inferring protein sequence-function relationships with
large-scale positive-unlabeled learning. Cell Syst 12: 92–
101.e8. doi:10.1016/j.cels.2020.10.007

Srinivas N, Krause A, Kakade SM, Seeger MW. 2010. Gauss-
ian process optimization in the bandit setting: no regret
and experimental design. In Proceedings of the 27th In-
ternational Conference on Machine Learning (ICML-10),
June 21–24, 2010, Haifa, Israel (ed. Fürnkranz J, Joachims
T), pp. 1015–1022. Omnipress, Madison, WI.

Stanton S, Maddox W, Gruver N, Maffettone P, Delaney E,
Greenside P, Wilson AG. 2022. Accelerating Bayesian
optimization for biological sequence design with denois-
ing autoencoders. PMLR 162: 20459–20478.

Stanton S, Maddox W, Wilson AG. 2023. Bayesian optimi-
zation with conformal prediction sets. PMLR 206: 959–
986.

Sugiyama M, Suzuki T, Nakajima S, Kashima H, von Bünau
P, Kawanabe M. 2008. Direct importance estimation for
covariate shift adaptation. Ann Inst Stat Math 60: 699–
746. doi:10.1007/s10463-008-0197-x

Sugiyama M, Suzuki T, Kanamori T. 2012. Density ratio
estimation in machine learning. Cambridge University
Press, Cambridge.

Tibshirani RJ, Foygel Barber R, Candes E, Ramdas A. 2019.
Conformal prediction under covariate shift. Adv Neural
Inf Process Syst 32: 1–11.

Tokuriki N, Tawfik DS. 2009. Protein dynamism and
evolvability. Science 324: 203–207. doi:10.1126/science
.1169375

Trinquier J, Uguzzoni G, Pagnani A, Zamponi F, Weigt M.
2021. Efficient generative modeling of protein sequences
using simple autoregressive models. Nat Commun 12:
5800. doi:10.1038/s41467-021-25756-4

Vovk V. 2012. Conditional validity of inductive conformal
predictors. PMLR 25: 475–490.

Vovk V, Gammerman A, Shafer G. 2005. Algorithmic learn-
ing in a random world. Springer, New York.

Wang J, Lisanza S, Juergens D, Tischer D,Watson JL, Castro
KM, Ragotte R, Saragovi A, Milles LF, BaekM, et al. 2022.
Scaffolding protein functional sites using deep learning.
Science 377: 387–394. doi:10.1126/science.abn2100

Watson JL, Juergens D, Bennett NR, Trippe BL, Yim J, Ei-
senach HE, Ahern W, Borst AJ, Ragotte RJ, Milles LF, et

al. 2023. De novo design of protein structure and function
with RFdiffusion. Nature 620: 1089–1100.

Weinstein EN, Amin AN, Frazer J, Marks DS. 2022a. Non-
identifiability and the blessings of misspecification in
models of molecular fitness and phylogeny. In Advances
in neural information processing systems 35 (NeurIPS
2022) (ed. Koyejo S, et al.), pp. 5484–5497. Curran Asso-
ciates, Red Hook, NY.

Weinstein EN, Amin AN, Grathwohl WS, Kassler D, Disset
J, Marks D. 2022b. Optimal design of stochastic DNA
synthesis protocols based on generative sequence models.
PMLR 151: 7450–7482.

Wheelock LB, Malina S, Gerold J, Sinai S. 2022. Forecasting
labels under distribution-shift for machine-guided se-
quence design. PMLR 166–180.

Wilson J, Hutter F, Deisenroth M. 2018. Maximizing acqui-
sition functions for Bayesian optimization. Adv Neural
Inf Process Syst 31: 1–12.

Wittmann BJ, Yue Y, Arnold FH. 2021. Informed training
set design enables efficient machine learning-assisted di-
rected protein evolution. Cell Syst 12: 1026–1045.e7.
doi:10.1016/j.cels.2021.07.008

Wrenbeck EE, Faber MS, Whitehead TA. 2017. Deep se-
quencing methods for protein engineering and design.
Curr Opin Struct Biol 45: 36–44. doi:10.1016/j.sbi.2016
.11.001

Wu J, Frazier P. 2016. The parallel knowledge gradientmeth-
od for batch Bayesian optimization. Adv Neural Inf Pro-
cess Syst 29: 1–9.

Wu Z, Kan SBJ, Lewis RD, Wittmann BJ, Arnold FH. 2019.
Machine learning-assisted directed protein evolution
with combinatorial libraries. Proc Natl Acad Sci 116:
8852–8858. doi:10.1073/pnas.1901979116

Wu Z, Yang KK, Liszka MJ, Lee A, Batzilla A, Wernick D,
Weiner DP, Arnold FH. 2020. Signal peptides generated
by attention-based neural networks. ACS Synth Biol 9:
2154–2161. doi:10.1021/acssynbio.0c00219

Yang G, Anderson DW, Baier F, Dohmen E, Hong N, Carr
PD, Kamerlin SCL, Jackson CJ, Bornberg-Bauer E, To-
kuriki N. 2019a. Higher-order epistasis shapes the fitness
landscape of a xenobiotic-degrading enzyme. Nat Chem
Biol 15: 1120–1128. doi:10.1038/s41589-019-0386-3

Yang KK, Chen Y, Lee A, Yue Y. 2019b. Batched stochastic
Bayesian optimization via combinatorial constraints de-
sign. PMLR 89: 3410–3419.

Yang J, Ducharme J, Johnston KE, Li FZ, Yue Y, Arnold FH.
2023. DeCOIL: optimization of degenerate codon librar-
ies for machine learning–assisted protein engineering.
ACS Synth Biol 12: 2444–2454.

ZhangC, Butepage J, KjellstromH,Mandt S. 2019. Advances
in variational inference. IEEE Trans Pattern Anal Mach
Intell 41: 2008–2026. doi:10.1109/TPAMI.2018.2889774

Zhu D, Brookes DH, Busia A, Carneiro A, Fannjiang C,
Popova G, Shin D, Donohue KC, Chang EF, Nowakowski
TJ, et al. 2022. Optimal trade-off control in machine
learning-based library design, with application to ad-
eno-associated virus (AAV) for gene therapy. bioRxiv
doi:10.1101/2021.11.02.467003

C. Fannjiang and J. Listgarten

20 Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a041469

Spring Harbor Laboratory Press 
 at F. HOFFMANN-LA ROCHE LTD on February 13, 2025 - Published by Coldhttp://cshperspectives.cshlp.org/Downloaded from 



 published online December 5, 2023Cold Spring Harb Perspect Biol 
 
Clara Fannjiang and Jennifer Listgarten
 
Is Novelty Predictable?

Subject Collection  Machine Learning for Protein Science and Engineering

Artificial Intelligence Learns Protein Prediction
Michael Heinzinger and Burkhard Rost

Structure Foundation Models
ProteinNetworks: AlphaFold and RoseTTAFold as 

Protein Design Using Structure-Prediction

Lisanza
Jue Wang, Joseph L. Watson and Sidney L.

Learning
Variant Effect Prediction in the Age of Machine

al.
Yana Bromberg, R. Prabakaran, Anowarul Kabir, et

Prediction
Petabase-Scale Homology Search for Structure

Sewon Lee, Gyuri Kim, Eli Levy Karin, et al.

Coevolutionary Sequence Information
Engineering Proteins Using Statistical Models of

A. Reynolds
Jerry C. Dinan, James W. McCormick and Kimberly

Antibody Comprehension
Building Representation Learning Models for

Galson, et al.
Justin Barton, Aretas Gaspariunas, Jacob D.

Is Novelty Predictable?
Clara Fannjiang and Jennifer Listgarten Applications in Protein Science

Environmental Impacts of Machine Learning

Loïc Lannelongue and Michael Inouye

Global Generative Models
Exploring the Protein Sequence Space with

Noelia Ferruz
Sergio Romero-Romero, Sebastian Lindner and

http://cshperspectives.cshlp.org/cgi/collection/ For additional articles in this collection, see 

Copyright © 2023 Cold Spring Harbor Laboratory Press; all rights reserved

Spring Harbor Laboratory Press 
 at F. HOFFMANN-LA ROCHE LTD on February 13, 2025 - Published by Coldhttp://cshperspectives.cshlp.org/Downloaded from 


