
Articles
https://doi.org/10.1038/s41587-021-01146-5

1Department of Electrical Engineering and Computer Science, University of California, Berkeley, USA. 2Center for Computational Biology, University of
California, Berkeley, USA. ✉e-mail: chloehsu@berkeley.edu; jennl@berkeley.edu

Naturally occurring proteins serve many crucial functions
in maintaining life, but have also been coopted for human
endeavors such as gene editing1,2; lighting up specific

parts of cells3; therapeutic drugs4; and herbicide-resistant crops5.
Furthermore, in many cases we reengineer proteins to better serve
our needs. For example, we might enhance the original function,
such as when we increase enzyme activity6 or make green fluorescent
proteins (GFPs) brighter7. Alternatively, we might modify the origi-
nal function to a related but different one, such as when we change an
antibody to bind to a new target8. The two most common approaches
to protein engineering are laboratory-based directed evolution9
and computational, physics-based rational design10,11. Machine
learning-based models that predict protein fitness from sequence
can allow in silico screening to complement these approaches. Here,
fitness is a broad term that refers to any protein property ranging
from stability to enzyme activity and ligand binding. Depending on
the size of the design space and the computational cost of inference
of the fitness model, the model can be used either to systematically
screen all protein variants in the design space12–15, or in combina-
tion with an optimization algorithm to search through vast design
spaces16–19. When in-depth knowledge of protein structure can be
coupled to the phenotype of interest, physics-based methods such
as FoldX20, PoPMuSiC21 and IMutant22 can be used to model protein
fitness. Applicable more generally, in the absence of such knowledge,
machine learning models can learn from unlabeled, evolutionarily
related sequences, or from variant sequences with experimentally
measured labels, to predict protein fitness. Herein, we focus exclu-
sively on machine learning methods for protein fitness prediction.

There have been two main machine learning-based strategies for
estimating protein fitness models. The first strategy uses implicit
fitness constraints present in naturally occurring protein sequences,
so-called evolutionary data. Such evolutionary methods start from
one query protein with the desired property (for example, a particu-
lar GFP that fluoresces at some wavelength), and search through
databases of naturally occurring proteins to find a set of related
proteins—typically by sequence homology—that are assumed to
be enriched for the same property as the query sequence. Then,
a probability density model of this set of protein sequences is

estimated; finally, sequence density evaluations are used to predict
the relative fitness of protein variants of interest23,24. Early methods
for the related problem of pathogenicity prediction, such as SIFT25
and Polyphen-2 (ref. 26), used position-specific substitution matri-
ces or Hidden Markov models27. In the context of protein fitness
prediction, Potts models13,23,28–30, which can model pairwise interac-
tions in the sequence, have been shown to outperform SIFT and
PolyPhen-2 at fitness prediction23. Deep learning models such as
variational autoencoders (VAEs) can capture higher-order interac-
tions, and may provide more accurate predictions still24. Most evo-
lutionary methods assume that the evolutionarily related proteins
have been aligned into a multiple sequence alignment (MSA)13,23–30.
Although the set of evolutionarily related proteins does not typi-
cally have associated measurements for the property of interest,
the homology search itself is assumed to implicitly provide a weak,
positive labeling of all proteins in the set. Thus, we refer to these
evolutionary methods as weak-positive only learning, rather than
unsupervised learning. The number of sequences used for training
in such cases can range from hundreds to hundreds of thousands
when standard procedures are used to curate the set23.

In the second main machine learning strategy for learning pro-
tein fitness models, supervised regression models are trained using
variant sequences coupled with fitness labels measured in the labora-
tory. Depending on the protein and the property of interest, a super-
vised data set may comprise hundreds to hundreds of thousands of
examples31,32. The laboratory assay may be a relatively direct mea-
surement of the fitness of interest33, or a crude proxy34. Additionally,
the set of variant sequences may be restricted to one or two muta-
tions away from a query sequence31,32,34, or be more heterogeneously
distributed33, with the former setting being more common. The
labeled variant sequences may vary at only a few sequence positions
(for example, four positions35), or vary more broadly32. By their lim-
ited construction, these data sets are not typically sufficiently rich
to comprehensively characterize protein fitness landscapes, but are
a good starting point. As time progresses, more comprehensive data
sets, revealing increasingly more nuances of fitness landscapes, will
expand our understanding. The simplest supervised approach is a
linear regression model with one-hot encoded site-specific amino

Learning protein fitness models from evolutionary
and assay-labeled data
Chloe Hsu   1 ✉, Hunter Nisonoff   2, Clara Fannjiang   1 and Jennifer Listgarten   1,2 ✉

Machine learning-based models of protein fitness typically learn from either unlabeled, evolutionarily related sequences or
variant sequences with experimentally measured labels. For regimes where only limited experimental data are available, recent
work has suggested methods for combining both sources of information. Toward that goal, we propose a simple combination
approach that is competitive with, and on average outperforms more sophisticated methods. Our approach uses ridge regres-
sion on site-specific amino acid features combined with one probability density feature from modeling the evolutionary data.
Within this approach, we find that a variational autoencoder-based probability density model showed the best overall perfor-
mance, although any evolutionary density model can be used. Moreover, our analysis highlights the importance of systematic
evaluations and sufficient baselines.

Nature Biotechnology | VOL 40 | JulY 2022 | 1114–1122 | www.nature.com/naturebiotechnology1114

mailto:chloehsu@berkeley.edu
mailto:jennl@berkeley.edu
http://orcid.org/0000-0002-7743-3168
http://orcid.org/0000-0003-1357-8111
http://orcid.org/0000-0002-0060-2082
http://orcid.org/0000-0002-6600-1431
http://crossmark.crossref.org/dialog/?doi=10.1038/s41587-021-01146-5&domain=pdf
http://www.nature.com/naturebiotechnology

ArticlesNaTurE BiOTEchnOlOgy

acid features; this approach can be extended to include pairwise fea-
tures, and a nonlinear transformation36. Richer supervised models
used for protein fitness prediction include convolutional neural net-
works (CNNs)15,37, long short-term memory networks (LSTMs)38,39
and transformers38,40,41. In some cases, such as that of LSTMs and
transformers, a large and broad set of unlabeled protein sequences
is also used during training38–42; these data are thought to help find
effective representations for the supervised learning component.
Note that some of these classes of models, such as LSTMs and
transformers, can be used either as probability density models or as
supervised models.

Recently, several proposals have been made to combine these
two machine learning strategies: using weak-positive only learning
on evolutionarily related sequences together with supervised learn-
ing on assay-labeled variant sequences42–44. We refer to this setting
as weak-positive semi-supervised learning. For many scenarios of
practical importance, property labels can only be assayed for hun-
dreds of protein sequences. Particularly in such a regime (but not
limited to this), it is important to combine both sources of data.
Barrat-Charlaix et al.44 introduce an elegant approach to do so, the
integrated Potts model, which assumes the Potts model energy
function is identical to that in a supervised regression model; these
are then trained jointly. Shamsi et al.43 instead ‘transfer’ information

from a learned evolutionary model to a supervised version of the
model by learning a binary masking of parameters. Motivated by
the field of natural language processing (NLP)45,46, Biswas et al.42 first
train an unsupervised multiplicative LSTM (mLSTM) on a large
database of naturally occurring protein sequences, then fine-tune it
with evolutionary data to produce a fixed-length latent representa-
tion called eUniRep. This fixed representation is then used as the
features in a regularized linear regression on the assay-labeled data.

Next we report on a systematic assessment of these ‘combined’
methods as well as ‘pure’ methods contained in them, such as prob-
ability density-only models, or supervised-only models. We also
introduce a simple baseline combined approach that turns out to be
competitive with and often outperform more sophisticated meth-
ods. In one instantiation, our approach achieves maximal perfor-
mance on 15 of the 19 data sets used in our assessment—more than
any other method—and is typically among the top competitors
when it does not. Our simple approach can make use of any evo-
lutionary probability density model, and adds little computational
burden to it.

Results
Published machine learning methods assessed. We assessed a
total of 13 published machine learning methods for protein fitness

UniRef100UniRef50

Cluster at 50% identity
Pretraining

JackHMMER search
for target protein

MSA of evolutionarily
related sequences

Density estimation

Fine-tuning

Regression on
embeddings

Fine-tuning

Fine-tuned
ESM-1b

(Rives2021)

EVmutation
Potts model
(Hopf2017)

DeepSequence
VAE

(Riesselman2018)

UniRep
mLSTM

(Alley2019)

‘Low-N’ eUniRep
regression

(Biswas2021)
Feature

concatenation

ESM-1b
transformer
(Rives2021)

‘Evotuned’
eUniRep

(Alley2019)

Binary mask on
coefficients

TLmutation
Potts model

(Shamsi2020)

Integrated
Potts model

(Barrat-Charlaix2016)

Feature
concatenation

Feature
concatenation

Feature
concatenation

Joint training on MSA
and labeled data

Augmented
ESM-1b
(New)

Augmented
VAE

(New)

Augmented
eUniRep

(New)

Augmented
Potts
(New)

Feature
concatenation

Augmented
HMM
(New)

Profile HMM
(Shihab2013)

Assay-labeled training sequences

Evolutionary
density score

0

0.03

–0.17

0.12

One-hot amino acid encoding

0

0.03

–0.17

0.12

Fitness labels

Supervised model

Features for augmented model

a

b

Weak-positive only

Unsupervised Semisupervised

Weak-positive semisupervised

Fig. 1 | Machine learning methods for protein fitness prediction. a, Overview of methods considered, divided into three machine learning strategies:
(1) weak-positive only learning methods that rely on probability density modeling of evolutionarily related sequences (profile HMM27, EVmutation23 and
DeepSequence24); (2) semi-supervised learning methods that rely on unlabeled UniRef50 protein sequences, supervised data and optionally evolutionarily
related sequences (fine-tuned ESM-1b40 and eUniRep regression42); (3) weak-positive semi-supervised learning methods that rely on evolutionarily
related sequences and supervised data (the integrated Potts model44, TLmutation43 and augmented models). b, Depiction of the augmented approach to
predicting fitness wherein evolutionary and assay-labeled data are combined, and it is assumed that the probability density model has already been fully
trained. In particular, the augmented approach uses linear regression with two kinds of features: first, evolutionary density evaluations (that is, the inferred
sequence log-likelihoods or approximations thereof from a sequence density model trained on evolutionarily related sequences), and second, one-hot
encoded site-specific amino acids, to perform supervised training on assay-labeled data.

Nature Biotechnology | VOL 40 | JulY 2022 | 1114–1122 | www.nature.com/naturebiotechnology 1115

http://www.nature.com/naturebiotechnology

Articles NaTurE BiOTEchnOlOgy

prediction that use evolutionary data, assay-labeled data or both.
Some39,40,42 additionally make use of a large ‘universal’ set of unla-
beled protein sequences, namely the UniRef50 database47. In addi-
tion to the three combined methods summarized earlier (eUniRep
regression, the integrated Potts model and TLmutation), we also
included methods that use only one or the other type of data so
as to glean their relative importance across a range of settings. In
particular, we included three representative purely evolutionary
methods: a profile hidden Markov model (HMM)27, a Potts model
(EVmutation23) and a VAE (DeepSequence24). We also included
two supervised methods that do not use evolutionary data: a lin-
ear regression model with one-hot encoded site-specific amino
acid features that uses only assay-labeled data, and the Evolutionary
Scale Modeling (ESM)-1b transformer40 model that was pre-
trained on UniRef50 (unsupervised), and then fine-tuned with the
assay-labeled data (supervised). While several transformers have
been developed and published for protein sequences38,48, we chose
the ESM-1b model because at the time of our assessment, it was
shown to have had superior performance on a number of predic-
tion tasks when compared to other transformers40. Figure 1a shows
a graphical overview of all of these methods.

To enable all of these methods to run on our entire suite of bench-
marking data sets we made minor modifications to some of the
training procedures so that they could run in a reasonable amount
of time. For each modification used, we show that the resulting per-
formance closely matches the performance of the original proce-
dure on data sets used in the original papers (Methods).

A simple baseline approach. We developed a simple approach that
makes use of both evolutionary and assay-labeled data, and that
turns out to be competitive with much more expensive and com-
plicated approaches. For any already-trained evolutionary prob-
ability density model, we use ridge regression on one-hot encoded
site-specific amino acid features augmented with one other fea-
ture—the sequence density evaluation (Fig. 1b). We refer to this

approach as ‘augmenting’ a probability density model. For example,
when the evolutionary probability density model is a Potts model,
our baseline yields an augmented Potts model. Beyond augmented
Potts models, we also compare to augmented VAEs and so forth.
The augmented Potts model in particular can be interpreted in a
Bayesian light as updating a prior from the evolutionary data, with
assay-labeled data (Methods). Because we use only site-specific
amino acid features in the regression augmentation, the Bayesian
update is focused on the site-specific parameters (as opposed to the
pairwise coupling parameters). If we had included also pairwise
amino acid features, then we would be more directly updating all
parameters in the Potts model prior, which would yield an approach
that is conceptually similar to the integrated Potts model44, albeit
with a different optimization objective. Given an already-trained
probability density model, the augmentation entails only training
a linear regression model, thus incurring little computational bur-
den. Although incorporating richer evolutionary density-derived
features, such as pairwise potentials, into the augmented regres-
sion could yield further improvements, we sought a baseline that
did not require feature selection or specialized regularization49. We
did, however, investigate extending our augmented regression fea-
tures to include density evaluations from multiple models, such as
from both a Potts model and a VAE, or from both a Potts model
and a Transformer, and so forth. However, doing so resulted in only
marginal gains on top of the augmented DeepSequence VAE model
(data not shown). We speculate that this may be because the differ-
ent probability density models were not providing sufficiently inde-
pendent information.

Assay-labeled and evolutionary data sets. We assessed all meth-
ods on 19 labeled mutagenesis data sets, each comprising hun-
dreds to tens of thousands of mutant sequences. Most related
work24,40,43,44 evaluates on a subset of, or all of the mutation effect
data sets in EVmutation23. We obtained our 19 data sets by including
all EVmutation23 protein data sets with at least 100 entries (to have

a b

0.7

* * * * * * * *

Average performance (19 data sets)

Augmented EVmutation Potts (MSA + labeled) eUniRep regression (Biswas2021) (UniRef50 + MSA + labeled)

Fine-tuned transformer (Rives2021) (UniRef50 + labeled, no MSA)

Integrated Potts (Barrat-Charlaix2016) (MSA + labeled)

Linear model with one-hot encoding (labeled only)

Profile HMM (MSA only)

EVmutation Potts (Hopf2017) (MSA only)

DeepSequence VAE (Riesselman2018) (MSA only)

Average double mutant performance (3 data sets)

0.6

0.5

0.4

S
pe

ar
m

an
 c

or
re

la
tio

n

0.3

48 96 144 192 240 48 96 144 192 240

80/20 split80/20 split
Training data sizeTraining data size

* * *

*

Fig. 2 | Performance of existing methods and the augmented Potts model. a, Average performance across all 19 data sets, as measured by Spearman
correlation. The horizontal axis shows the number of supervised training examples used. Error bars are centered at the mean and indicate bootstrapped
95% confidence intervals estimated from 20 random splits of training and test data. Note some bars are so small as to be almost invisible. Asterisks (*)
indicate that P < 0.01 among all two-sided Mann–Whitney U-tests that the augmented Potts model has different performance from each other method,
at a given sample size. In particular, the largest such P values for each training set size were, respectively, P = 9.0 × 10−3, 3.9 × 10−7, 9.2 × 10−8, 7.7 × 10−4,
6.8 × 10−8, 6.8 × 10−8, 6.8 × 10−8 and 7.7 × 10−4 for training data sizes 72, 96, 120, ⋯ , 240 and P = 7.7 × 10−4 for the 80/20 split. b, Average performance
across all three data sets containing double mutant sequences (sequences that are two mutations away from the wild-type), and restricted to testing on
only double mutants. Asterisks (*) indicate same as in a, with largest P values here, respectively, P = 3.4 × 10−4, 2.7 × 10−6 and 7.7 × 10−4 for training data
sizes 192, 216, 240 and P = 7.7 × 10−4 for the 80/20 split. See Extended Data Fig. 1 for NDCG and Extended Data Figs. 2 and 3 and Supplementary Figs. 1 and
2 for performance on individual data sets.

Nature Biotechnology | VOL 40 | JulY 2022 | 1114–1122 | www.nature.com/naturebiotechnology1116

http://www.nature.com/naturebiotechnology

ArticlesNaTurE BiOTEchnOlOgy

sufficient data to glean insights from), and also included a GFP fluo-
rescence data set33 as in Biswas et al.42 (however, their exact data set
was not available at the time of our assessment). Other data sets that
might have been relevant had insufficient evolutionary data in the
MSAs32,35. In each data set used, mutations were spread across either
a domain or the whole protein. Although most (16 out of the 19)
labeled data sets consisted only of sequences that were one muta-
tion away from a fixed wild-type protein (‘single mutants’), we also
include detailed case studies of the three data sets33,34,50 that contained
sequences more than one mutation away from a wild-type protein
(‘higher-order mutants’). Supplementary Table 1 provides a detailed
overview of these data sets. Each labeled data set was paired with
an evolutionary data set found by searching through the UniRef100
database47 for sequences similar to a single, relevant wild-type pro-
tein sequence, using Jackhmmer23,24,42,51. For ease of comparison
with other papers23,24,43, when available, we directly used MSAs
curated in this way and provided by EVmutation23. Otherwise, we
used Jackhmmer with parameters set as in EVmutation.

Experimental overview. For each data set we always used 20% of
the available labeled data for test sets (which by definition are not
used to train or perform hyper-parameter selection). Given a fixed
test set, we systematically varied the supervised training data set size
by randomly sampling each of 48, 72, ⋯ , 216, 240 training examples
from the nontest sequences (each training data set size was increased
in intervals of 24). In addition to these fixed training data set sizes,
for more direct comparison with TLmutation43 and ESM-1b40, we
also used all the remaining 80% of the available data not used for
testing, which we refer to as an 80/20 train/test split. When compu-
tationally feasible, we used fivefold cross-validation on the training
data set for hyper-parameter selection, and otherwise held out 20%
of the training data as validation data. For each training data set size,
including the 80/20 split, we averaged performance over 20 random
seeds that randomized the data partitions.

We used two measures of predictive model performance: (1) a
Spearman rank correlation between the true and predicted fitness
values13,23,24,40,44, and (2) a ranking measure from the information
retrieval community called normalized discounted cumulative
gain (NDCG)15,52, which gives high values when the top predicted
results are enriched for truly high fitness proteins—that is, when
the model is predicting the ranking of the most fit sequences well. In
contrast to the Spearman correlation, where errors at the top of the
true ranked list carry the same weight as mismatches at the bottom,
NDCG puts a higher weight on ranking the top of the list correctly
and can be seen as a smoothed version of top k average fitness with-
out a fixed k. No one metric is necessarily the most relevant, as this
will depend on the task at hand. For example, in using the model
to propose a list of candidates for protein engineering, we may be
interested only in the best performance among the top k proteins
which will be assessed in the laboratory. In contrast, if using the
model to understand the fitness landscape of a protein, we may be
interested in more general accuracy. By using both Spearman corre-
lation and NDCG, we hope to be broadly informative across a wide
variety of settings. For each Spearman correlation result in the main
text, the corresponding result with NDCG is found in the Extended
Data and the Supplementary Information. Generally, the two met-
rics yielded similar qualitative conclusions.

Results for TLmutation43 are omitted from the main figures for
several reasons. First, TLmutation is conceptually similar to our
augmented Potts model, but is restricted to only allow for zeroing
out of the evolutionary Potts model parameters by way of super-
vised learning. Second, TLmutation was much more computation-
ally expensive than the augmented Potts model. And finally, in a set
of exploratory experiments, TLmutation performed worse than our
augmented Potts model (Supplementary Fig. 3).

Performance of existing methods and the augmented Potts
model. When comparing existing methods to each other and to our
augmented Potts model, averaged over all data sets, the augmented
Potts model typically outperformed existing methods, including
more sophisticated methods such as eUniRep regression42 (Fig. 2).
The sole exception was that the purely evolutionarily based VAE out-
performed the augmented Potts model on the double-mutant data
in the low data regime. However, later we show that the augmented
VAE outperforms the VAE, suggesting that either the Potts model
is not sufficiently expressive in some cases, or that the VAE has a
more suitable inductive bias, or both. As expected, with increasing
labeled training data, the supervised methods increase in accuracy.
When breaking down the average performance into individual data
sets, the augmented Potts model is competitive on most data sets
(Extended Data Figs. 2 and 3 and Supplementary Figs. 1 and 2).
The extremely simple, supervised-only, linear regression on one-hot
encoded amino acid features, is also among the top performers in
the 80/20 split setting. Due to limited availability of data sets that
include double mutants, the reported double-mutant performance

0.7

Average performance (19 data sets)

0.6

S
pe

ar
m

an
 c

or
re

la
tio

n

0.5

0.4

0.3

48 96 144

Training data size

Augmented EVmutation Potts

EVmutation Potts (Hopf2017)

Augmented DeepSequence VAE

DeepSequence VAE (Riesselman2018)

Augmented eUniRep

eUniRep regression (Biswas2021)

Augmented transformer

Fine-tuned transformer (Rives2021)

Augmented HMM

Profile HMM

Linear model with one-hot encoding

192 240

80/20 split

Fig. 3 | Augmented approach using different probability density models.
Using the same evaluation setup as in Fig. 2a, methods are compared with
their augmented counterpart, using matching colors on each pair. Flat,
horizontal lines represent evolutionary density models that do not have
access to assay-labeled data. Dashed lines indicate existing methods.
Error bars are centered at the mean and indicate bootstrapped 95%
confidence interval from 20 random data splits. See Extended Data Fig. 4
for performance measured by NDCG.

Nature Biotechnology | VOL 40 | JulY 2022 | 1114–1122 | www.nature.com/naturebiotechnology 1117

http://www.nature.com/naturebiotechnology

Articles NaTurE BiOTEchnOlOgy

is averaged over only the three relevant data sets and hence is heav-
ily influenced by their characteristics. We refer the reader to Fig. 5
for the double-mutant performance breakdown.

Augmented models as a general, simple and effective strategy.
Next we also augmented the profile HMM, the DeepSequence
VAE, the eUniRep mLSTM and the ESM-1b transformer, compar-
ing them to each other and to the augmented Potts model. Note
that the transformer is the only method that does not make use of
evolutionary data, but was pretrained on UniRef50. Overall, we
found that the augmented VAE achieved the highest average per-
formance among the augmented models, with the augmented Potts
model a close second (Fig. 3). No matter which density model we
augmented, the augmented model always outperformed the corre-
sponding nonaugmented existing method, regardless of the training
data set size.

Among all approaches evaluated here, and earlier, the augmented
DeepSequence VAE tended to be the best performer on most data
sets (Fig. 4b). It worked particularly well relative to others when pre-
dicting enzyme activity, achieving maximal performance in all nine
of those protein data sets (Fig. 4b). For binding affinity, the different
augmented models performed comparably (Fig. 4b).

Generally, all models that make use of evolutionary data achieved
higher Spearman correlation with larger effective MSA size—the
weighted number of sequences in the MSA after accounting for
sequence similarity with sample reweighting. Meanwhile, the rela-
tive ranking of models appears to be unrelated to the effective MSA
size (Fig. 4a). Although each data set had a fixed MSA, we chose the
data set with the largest effective MSA size (poly(A)-binding pro-
tein) to systematically reduce the size to observe the consequences of
decreasing size. In this case study, we considered the augmented Potts
model and linear regression (Supplementary Fig. 4). The augmented

a

b

0.8

Enzyme activity Binding Other

Augmented EVmutation Potts

Augmented DeepSequence VAE

Augmented eUniRep

Augmented transformer

Augmented HMM

EVmutation Potts (Hopf2017)

DeepSequence VAE (Riesselman2018)

eUniRep regression (Biswas2021)

Fine-tuned transformer (Rives2021)

Profile HMM

Integrated Potts (Barrat-Charlaix2016)

Linear model with one-hot encoding

MSA effective size

48

4,530

15,462

0.7

0.6

0.5

S
pe

ar
m

an
 c

or
re

la
tio

n

0.4

0.3

0.2

Augmented EVmutation Potts

Enzyme activity

2/9

9/9
2/9

3/9

3/9

1/9

1/9

Binding Other

Augmented DeepSequence VAE
Augmented eUniRep

Augmented transformer
Augmented HMM

EVmutation Potts (Hopf2017)
DeepSequence VAE (Riesselman2018)

eUniRep regression (Biswas2021)
Fine-tuned transformer (Rives2021)

Profile HMM
Integrated Potts (Barrat-Charlaix2016)

Linear model with one-hot encoding

Counts

0 1 2 3 4 5 0 1 2 3 4 56 7 8 9 10 11

Counts Counts

UBE4B
 (U

-b
ox

 d
om

ain
)

β-l
ac

ta
m

as
e

(F
irn

be
rg

20
14

)

β-l
ac

ta
m

as
e

(S
tiff

ler
20

15
)

β-g
luc

os
ida

se

DNA m
et

hy
las

e
ha

eI
II

YAP1
(W

W
 d

om
ain

)

BRCA1
(ri

ng
 d

om
ain

) (
y2

h)

PSD95
 (P

DZ d
om

ain
)

GAL4
 (D

NA-b
ind

ing
 d

om
ain

)

PABP (R
RM

 d
om

ain
)

Hep
at

itis
 C

 N
S5A

β-l
ac

ta
m

as
e

(D
en

g2
01

2)

Ubiq
uit

in
(R

os
co

e2
01

3)

Ubiq
uit

in
(R

os
co

e2
01

4)
GFP

β-l
ac

ta
m

as
e

(J
ac

qu
ier

20
13

)

HSP90
 (A

TPas
e

do
m

ain
)

BRCA1
(ri

ng
 d

om
ain

) (
e3

)

Kan
am

yc
in

kin
as

e
APH(3

′)-
II

0 1 2 3 4 5

1/5
1/5

2/5
4/5

5/5

2/5
2/5
2/5

4/5

3/54/5

3/5

Fig. 4 | Performance on individual data sets. a, Other than the EVmutation Potts model, the DeepSequence VAE and the Profile HMM, none of which
use supervised data, all other methods here used 240 labeled training sequences. Each colored dot is the average Spearman correlation from 20 random
train/test splits. Random horizontal jitter was added for display purposes. The bottom row of black dots indicates the effective MSA size, determined
by accounting for sequence similarity with sample reweighting at 80% identity cutoff. b, Summary of how often each modeling strategy had maximal
Spearman correlation. Such modeling strategies were determined by first identifying the top-performing strategy for any given scenario, and then also
identifying any other strategy that came within the 95% confidence interval of the top performer. See Extended Data Fig. 5 for analogous plots for NDCG
and Extended Data Fig. 6 for evaluation on varying numbers of training examples.

Nature Biotechnology | VOL 40 | JulY 2022 | 1114–1122 | www.nature.com/naturebiotechnology1118

http://www.nature.com/naturebiotechnology

ArticlesNaTurE BiOTEchnOlOgy

Potts model performance degraded gradually when subsampling
the MSA, while always outperforming linear regression, even with
only 32 evolutionary sequences. In order to examine the effect of
MSA size, we held the protein fixed and downsampled the MSA
sequences. This is of course different than comparing different pro-
teins with different MSA sizes. However, because different proteins
have different fitness landscapes, there is no way to directly compare
in such a manner.

Extrapolation from single to higher-order mutants. Because 16
of the 19 supervised data sets consisted of only single mutants of a
wild-type, we next more closely examined the three data sets with
higher-order mutants, namely, the GFP33, Poly(A)-binding protein
(PABP) RRM domain34 and ubiquitination factor E4B (UBE4B)
U-box domain50 data sets. Here, we trained the models using only
single-mutant labeled data, and then evaluated on single, double,
triple and quadruple mutants separately (Fig. 5 and Supplementary
Fig. 5). We also tried training on both the single- and double-mutant
data, and the results were qualitatively similar to using just the
single-mutant data for training, albeit with the relative difference in
performance between any two models generally decreasing with more

data (Extended Data Fig. 7 and Supplementary Fig. 6). The extrapola-
tive performance should depend on how much epistasis contributes
to the fitness landscape, and also on the ability of a model to capture
such epistasis. The poor extrapolative performance on UBE4B may
also stem from its evolutionary data not providing as much relevant
information to the property of interest (that is, the assayed property).

In data sets where the assay-labeled variants comprise a variety
of edit distances from the wild-type, we found that simply using the
edit distance itself is predictive of fitness relative to the machine
learning models evaluated. For example, for GFP fluorescence, edit
distance as a predictive model achieves a Spearman correlation of
0.45 (Fig. 6), presumably because most mutations are deleterious
and roughly additively so. This result indicates that correlation mea-
sures can be driven by simple features, even if captured by complex
models. In contrast to GFP, mutation count is not as strongly pre-
dictive for the UBE4B U-box domain data (Extended Data Fig. 8),
presumably because the mutational effects are more heterogeneous
in the sense that they comprise more diverse (both deleterious and
beneficial), or nonadditive effects, or both. Note that despite the
bimodality of the experimentally measured fitness values, the pre-
dicted fitness values were unimodal from all five methods.

0.6

Double mutants
(extrapolation)Test on: single mutants

Triple mutants
(extrapolation)

Quadruple mutants
(extrapolation)

0.4

0.2

0.8

0.7

0.6

0.5

0.4

0.3

0.5

0.4

S
pe

ar
m

an
 c

or
re

la
tio

n

U
B

E
4B

P
A

B
P

-R
R

M
G

F
P

S
pe

ar
m

an
 c

or
re

la
tio

n
S

pe
ar

m
an

 c
or

re
la

tio
n

0.3

0.2

0.1

48 96 144

Training data size Training data size Training data size Training data size

192

TS = 613

TS = 613

TS = 1,188 TS = 36,522

TS = 3,662 TS = 2,026 TS = 844

TS = 21,969 TS = 8,088 TS = 1,404

240 96 144 192 24048 96 144 192 24048 96 144 192 240

Augmented EVmutation Potts

EVmutation Potts (Hopf2017)

Augmented DeepSequence VAE

DeepSequence VAE (Riesselman2018)

Augmented eUniRep

eUniRep regression (Biswas2021)

Augmented transformer

Fine-tuned transformer (Rives2021)

Augmented HMM

Profile HMM

Linear model with one-hot encoding

48

Fig. 5 | Extrapolative performance from single mutants to higher-order mutants. Each column shows the performance when training on randomly
sampled single mutants and then separately testing on single, double or triple mutants, none of which were in the training data. The total size (TS)
value indicates the total number of mutants of a particular order in all of the data. For example, ‘TS = 613’ for single mutants means there were 613 total
single mutants in the data set that we sampled from. Error bars are centered at the mean and indicate bootstrapped 95% confidence interval from
20 random data splits. Supplementary Fig. 5 shows quantitatively similar results when measuring performance by NDCG, while Extended Data Fig. 7 and
Supplementary Fig. 6 show results for extrapolation when training on more than just single mutants (and therefore for larger training data set sizes).

Nature Biotechnology | VOL 40 | JulY 2022 | 1114–1122 | www.nature.com/naturebiotechnology 1119

http://www.nature.com/naturebiotechnology

Articles NaTurE BiOTEchnOlOgy

Adding in structure-based information. The augmentation
approach can easily incorporate structure-based features or predic-
tions from existing methods as additional regression inputs. Recent
studies12,15,53–55 have shown that protein structures, Rosetta energy
terms and molecular dynamics models can provide valuable infor-
mation for fitness prediction. A comprehensive study of how incor-
porating such features may improve fitness prediction herein is
beyond the scope of the present work. However, to get an initial sense
of where such future work may lead, we added FoldX-derived stabil-
ity features to our models on the three data sets with higher-order
mutants (Extended Data Fig. 9 and Supplementary Fig. 7). Adding
the structure-based FoldX-derived features improved performance
on GFP relative to the augmented VAE, but such improvements
were not observed on PABP-RRM or UBE4B. These initial results
indicate that whether structure-based features provide comple-
mentary information to the evolutionary and assay-labeled data
may depend on the property of interest and on the quality of
available structures.

Discussion
We compared machine learning-based methods that make use of
both evolutionary and assay-labeled data for protein fitness predic-
tion. In addition to comparing published methods, we introduced
a simple baseline approach, wherein evolutionary density models
are augmented with supervised data in a linear regression model
on site-specific amino acid features. We instantiated this approach
using density models in the form of a profile HMM, a Potts model,
a VAE, an LSTM and a transformer. Across a wide range of settings,
the augmented Potts model was competitive with higher capacity
and more computationally expensive approaches, such as the deep
learning-based transformer and LSTMs. Even in the relatively larger
data regimes—which were still small—the extremely simple linear
regression using site-specific one-hot encoded amino acid features
performed well.

One may initially be puzzled as to how linear models with only
site-specific features can generalize at all to mutations not seen at
train time, let alone surpass nonlinear models in this task. However,
as detailed in the Methods, such generalization can emerge from
a particular form of l2-regularized linear regression with one-hot

encoded features. In effect, through the regularization, the model
learns about the importance of each position, even though each
amino acid at each position has its own parameter. Thus, if the
effects of different mutations at the same position are in the same
direction, the regularized linear models can do a reasonable job
of generalizing in such a manner. Although higher-capacity deep
learning-based approaches can in principle also pick up on this
predictive power, they may be struggling to do so effectively, pos-
sibly owing to more degrees of freedom combined with a less suit-
able inductive bias. Having said that, deep-learning models are not
well understood, with even the classical bias-variance tradeoff now
in question56.

When comparing different augmented models, the augmented
VAE was most effective at ranking mutational effects overall. Even
though the augmented ESM-1b transformer does not use evolu-
tionary data (but does use a large, ‘global’ set of proteins for unsu-
pervised pretraining), the augmented ESM-1b transformer was
competitive with methods that do have access to evolutionary data
in the regime of relatively large supervised training data sets. Thus,
an augmented transformer may be a promising choice for proteins
with limited evolutionary data. More accurate approximations to
the transformer sequence log-likelihood could improve perfor-
mance further.

Approaches now considered standard in the mainstream
machine learning community that use supervised data to fine-tune
deep probability density models, such as transformers and LSTMs,
were herein outperformed by the augmented transformers and
LSTMs. These results highlight that state-of-the-art techniques
from NLP should be carefully considered in the context of protein
modeling. One substantial difference present in our setting is the
existence of weak-positively labeled evolutionary data, which has no
direct analog in traditional NLP data sets.

As larger and more variable (i.e., spanning more of protein space)
assay-labeled data sets emerge, we expect that increasingly richer
models will dominate. Moreover, different machine learning strate-
gies are likely needed for smaller and larger labeled data regimes,
both of which are likely to remain relevant in protein engineering
into the future. Therefore, when making general methodological
recommendations, researchers should either consider implications

0.5

Mutation count

Spearman 0.45 Spearman 0.50 Spearman 0.59 Spearman 0.67 Spearman 0.60

BLOSUM62 Potts VAE eUniRep

0

–0.5

–1.0

F
itn

es
s

P
re

di
ct

io
r

hi
st

og
ra

m

–1.5

–2.0

Mutation count
BLOSUM62

substitution score
Potts model
log likelihood

VAE ELBO eUniRep log likelihood

–2.5

8 6 4 2 0

–6
0

–6
0

–4
0

–4
0

–4
0

–2
0

–2
0

–2
0

–4
00

–3
00

–2
00

–1
00 0

Fitness
histogram 0

1

2

3

4

5

6

7

M
utation count (distance from

 W
T

)

8

9

0 0 0

Fig. 6 | Edit distance from wild-type sequence as a predictive model. On the GFP fluorescence data set, we compared the performance of nonaugmented
evolutionary density models to two predictive models that use only the edit distance of a sequence to the wild-type. In one version, the edit distance is
defined as the number of mutations away from the wild-type. In the other version, we used BLOSUM62 to compute the distance from wild-type, which
thus accounts not only for the number of mutations, but also the type of mutation. Each dot represents a GFP sequence, with darker colors indicating larger
distances from the wild-type. See Extended Data Fig. 8 for the comparison on the UBE4B U-box domain data set.

Nature Biotechnology | VOL 40 | JulY 2022 | 1114–1122 | www.nature.com/naturebiotechnology1120

http://www.nature.com/naturebiotechnology

ArticlesNaTurE BiOTEchnOlOgy

across the full range of labeled data sizes or restrict recommenda-
tions to the regime tested.

To get an initial sense of how bringing in structure-based pre-
diction might alter our narrative, we compared augmentation
approaches with and without FoldX-derived stability features on
three data sets, finding that FoldX features could provide new, use-
ful information. Going forward, it will be beneficial to examine this
topic more comprehensively, including the use of other tools such
as Polyphen-2 (ref. 26). PoPMuSiC21, IMutant22 and AlphaFold2 (ref.
57), for example. As more features go into the augmentation, there
are likely opportunities to use higher-capacity models for the aug-
mentation model, beyond linear regression. These could be based
on, for example, regression trees or deep learning.

Although our goal was to assess different methods on real data
rather than assuming certain simulation settings are representative,
these real data sets have their limitations and are not necessarily
representative of the test sets that one might encounter for protein
engineering. In particular, in a protein engineering setting, one
would like to understand how the model performs across a larger
swath of protein space. Most importantly, one would like predic-
tive models to extrapolate as accurately as possible to higher fitness
areas than that observed in the data58, and to be able to gauge when
such extrapolations are unreliable17. While it may be possible to
leverage techniques from covariate shift adaptation to help in this
regard58,59, such approaches come with their own problems. We thus
focused on directly evaluating methods without such corrections.

While the Spearman rank correlation has been used in previous
studies23,24,38,40,43, it does not capture all aspects of predictive perfor-
mance. The Spearman rank correlation reflects a monotonic asso-
ciation between predicted and experimental mutational effects, but
does not necessarily speak to anything about the mean squared
error of those predictions, their scale, or any distributional char-
acteristics of the fitness landscape, such as bimodality. However,
as demonstrated by Wittman et al.15, even modest Spearman cor-
relation can be useful for speeding up iterative directed evolution.
Our auxiliary use of NDCG, which also reflects distributional
characteristics of the fitness landscape beyond the rank, provided
added insight into the robustness of the Spearman rank correlation
to assess predictive accuracy, as conclusions drawn from NDCG
were generally concordant with those based on the Spearman rank
correlation. Ultimately, the specific task at hand will determine the
suitability of any given metric, and any metric will have its short-
comings for a given task.

While we have focused on evaluating predictive performance,
in cases where the predictive model is used in conjunction with a
design strategy15,17–19,58, one should additionally evaluate how design
and prediction perform in tandem in addition to independently.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of
author contributions and competing interests; and statements of
data and code availability are available at https://doi.org/10.1038/
s41587-021-01146-5.

Received: 9 April 2021; Accepted: 2 November 2021;
Published online: 17 January 2022

References
	1.	 Doudna, J. A. & Charpentier, E. The new frontier of genome engineering

with CRISPR–Cas9. Science 346, 1258096 (2014).
	2.	 Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of

CRISPR–Cas9 for genome engineering. Cell 157, 1262–1278 (2014).
	3.	 Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C.

Green fluorescent protein as a marker for gene expression. Science 263,
802–805 (1994).

	4.	 Leader, B., Baca, Q. J. & Golan, D. E. Protein therapeutics: a summary and
pharmacological classification. Nat. Rev. Drug Discov. 7, 21–39 (2008).

	5.	 Pollegioni, L., Schonbrunn, E. & Siehl, D. Molecular basis of glyphosate
resistance–different approaches through protein engineering. FEBS J. 278,
2753–2766 (2011).

	6.	 Joo, H., Lin, Z. & Arnold, F. H. Laboratory evolution of peroxide-mediated
cytochrome P450 hydroxylation. Nature 399, 670–673 (1999).

	7.	 Heim, R. & Tsien, R. Y. Engineering green fluorescent protein for improved
brightness, longer wavelengths and fluorescence resonance energy transfer.
Curr. Biol. 6, 178–182 (1996).

	8.	 Binz, H. K., Amstutz, P. & Plückthun, A. Engineering novel binding proteins
from nonimmunoglobulin domains. Nat. Biotech. 23, 1257–1268 (2005).

	9.	 Arnold, F. H. Design by directed evolution. Acc. Chem. Res. 31, 125–131 (1998).
	10.	Alford, R. F. et al. The Rosetta all-atom energy function for macromolecular

modeling and design. J. Chem. Theory Comput. 13, 3031–3048 (2017).
	11.	Karplus, M. & Kuriyan, J. Molecular dynamics and protein function. Proc.

Natl Acad. Sci. USA 102, 6679–6685 (2005).
	12.	Rocklin, G. J. et al. Global analysis of protein folding using massively parallel

design, synthesis, and testing. Science 357, 168–175 (2017).
	13.	Russ, W. P. et al. An evolution-based model for designing chorismate mutase

enzymes. Science 369, 440–445 (2020).
	14.	Romero, P. A., Krause, A. & Arnold, F. H. Navigating the protein fitness

landscape with Gaussian processes. Proc. Natl Acad. Sci. USA 110,
E193–E201 (2013).

	15.	Wittmann, B. J., Yue, Y. & Arnold, F. H. Informed training set design enables
efficient machine learning-assisted directed protein evolution. Cell Syst. 12,
1026–1045 (2021).

	16.	Bryant, D. H. et al. Deep diversification of an AAV capsid protein by machine
learning. Nat. Biotech. 39, 691–696 (2021).

	17.	Brookes, D., Park, H. & Listgarten, J. Conditioning by adaptive sampling
for robust design. In Proc. International Conference on Machine Learning
(eds Chaudhuri, K. & Salakhutdinov, R.) 773–782 (PMLR, 2019).

	18.	Yang, K. K., Wu, Z. & Arnold, F. H. Machine-learning-guided directed
evolution for protein engineering. Nat. Methods 16, 687–694 (2019).

	19.	Sinai, S. et al. AdaLead: a simple and robust adaptive greedy search algorithm
for sequence design. Preprint at https://arxiv.org/abs/2010.02141 (2020).

	20.	Schymkowitz, J. et al. The FoldX web server: an online force field. Nucleic
Acids Res. 33, W382–W388 (2005).

	21.	Dehouck, Y., Kwasigroch, J. M., Gilis, D. & Rooman, M. Popmusic 2.1: a web
server for the estimation of protein stability changes upon mutation and
sequence optimality. BMC Bioinform. 12, 151 (2011).

	22.	Capriotti, E., Fariselli, P. & Casadio, R. I-mutant2. 0: predicting stability
changes upon mutation from the protein sequence or structure. Nucleic Acids
Res. 33, W306–W310 (2005).

	23.	Hopf, T. A. et al. Mutation effects predicted from sequence co-variation. Nat.
Biotech. 35, 128–135 (2017).

	24.	Riesselman, A. J., Ingraham, J. B. & Marks, D. S. Deep generative models
of genetic variation capture the effects of mutations. Nat. Methods 15,
816–822 (2018).

	25.	Sim, N.-L. et al. SIFT web server: predicting effects of amino acid
substitutions on proteins. Nucleic Acids Res. 40, W452–W457 (2012).

	26.	Adzhubei, I. A. et al. A method and server for predicting damaging missense
mutations. Nat. Methods 7, 248–249 (2010).

	27.	Shihab, H. A. et al. Predicting the functional, molecular, and phenotypic
consequences of amino acid substitutions using hidden Markov models.
Human Mutation 34, 57–65 (2013).

	28.	Mann, J. K. et al. The fitness landscape of hiv-1 gag: advanced modeling
approaches and validation of model predictions by in vitro testing. PLoS
Comput. Biol. 10, e1003776 (2014).

	29.	Cheng, R. R., Morcos, F., Levine, H. & Onuchic, J. N. Toward rationally
redesigning bacterial two-component signaling systems using coevolutionary
information. Proc. Natl Acad. Sci. USA 111, E563–E571 (2014).

	30.	Figliuzzi, M., Jacquier, H., Schug, A., Tenaillon, O. & Weigt, M.
Coevolutionary landscape inference and the context-dependence of mutations
in beta-lactamase tem-1. Mol. Biol. E 33, 268–280 (2016).

	31.	Araya, C. L. et al. A fundamental protein property, thermodynamic stability,
revealed solely from large-scale measurements of protein function. Proc. Natl
Acad. Sci. USA 109, 16858–16863 (2012).

	32.	Olson, C. A., Wu, N. C. & Sun, R. A comprehensive biophysical description
of pairwise epistasis throughout an entire protein domain. Curr. Biol. 24,
2643–2651 (2014).

	33.	Sarkisyan, K. S. et al. Local fitness landscape of the green fluorescent protein.
Nature 533, 397–401 (2016).

	34.	Melamed, D., Young, D. L., Gamble, C. E., Miller, C. R. & Fields, S. Deep
mutational scanning of an RRM domain of the Saccharomyces cerevisiae poly
(A)-binding protein. RNA 19, 1537–1551 (2013).

	35.	Wu, N. C., Dai, L., Olson, C. A., Lloyd-Smith, J. O. & Sun, R. Adaptation
in protein fitness landscapes is facilitated by indirect paths. eLife 5,
e16965 (2016).

Nature Biotechnology | VOL 40 | JulY 2022 | 1114–1122 | www.nature.com/naturebiotechnology 1121

https://doi.org/10.1038/s41587-021-01146-5
https://doi.org/10.1038/s41587-021-01146-5
https://arxiv.org/abs/2010.02141
http://www.nature.com/naturebiotechnology

Articles NaTurE BiOTEchnOlOgy

	36.	Otwinowski, J., McCandlish, D. M. & Plotkin, J. B. Inferring the shape of
global epistasis. Proc. Natl Acad. Sci. USA 115, E7550–E7558 (2018).

	37.	Shanehsazzadeh, A., Belanger, D. & Dohan, D. Is transfer learning necessary
for protein landscape prediction? Preprint at https://arxiv.org/abs/2011.03443
(2020).

	38.	Rao, R. et al. Evaluating protein transfer learning with TAPE. In Proc.
Advances in Neural Information Processing Systems (eds Wallach, H. et al.)
9689–9701 (Curran Associates, Inc., 2019).

	39.	Alley, E. C., Khimulya, G., Biswas, S., AlQuraishi, M. & Church, G. M.
Unified rational protein engineering with sequence-based deep representation
learning. Nat. Methods 16, 1315–1322 (2019).

	40.	Rives, A. et al. Biological structure and function emerge from scaling
unsupervised learning to 250 million protein sequences. Proc. Natl Acad. Sci.
USA 118, e2016239118 (2021).

	41.	Madani, A. et al. Deep neural language modeling enables functional protein
generation across families. Preprint at bioRxiv https://doi.
org/10.1101/2021.07.18.452833 (2021).

	42.	Biswas, S., Khimulya, G., Alley, E. C., Esvelt, K. M. & Church, G. M. Low-N
protein engineering with data-efficient deep learning. Nat. Methods 18,
389–396 (2021).

	43.	Shamsi, Z., Chan, M. & Shukla, D. TLmutation: predicting the effects of
mutations using transfer learning. J. Phys. Chem. B. 124, 3845–3854 (2020).

	44.	Barrat-Charlaix, P., Figliuzzi, M. & Weigt, M. Improving landscape inference
by integrating heterogeneous data in the inverse ising problem. Sci. Rep. 6,
37812 (2016).

	45.	Howard, J. & Ruder, S. Universal language model fine-tuning for text
classification. In Proc. 56th Annual Meeting of the Association for
Computational Linguistics, Vol. 1: long papers (eds Gurevych, I. & Miyao, Y.)
328–339 (Association for Computational Linguistics, 2018).

	46.	Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proc. 2019
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Vol. 1: long and
short papers, 4171–4186 (2019).

	47.	Suzek, B. E. et al. Uniref clusters: a comprehensive and scalable alternative for
improving sequence similarity searches. Bioinformatics 31, 926–932 (2015).

	48.	Elnaggar, A. et al. ProtTrans: towards cracking the language of life’s code
through self-supervised deep learning and high performance computing.
Preprint at bioRxiv https://doi.org/10.1101/2020.07.12.199554 (2020).

	49.	Aghazadeh, A. et al. Epistatic net allows the sparse spectral regularization
of deep neural networks for inferring fitness functions. Nat. Commun. 12,
5225 (2021).

	50.	Starita, L. M. et al. Activity-enhancing mutations in an E3 ubiquitin ligase
identified by high-throughput mutagenesis. Proc. Natl Acad. Sci. USA 110,
E1263–E1272 (2013).

	51.	Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive
sequence similarity searching. Nucleic Acids Res. 39, W29 (2011).

	52.	Järvelin, K. & Kekäläinen, J. Cumulated gain-based evaluation of ir
techniques. ACM Tran. Inf. Syst. 20, 422–446 (2002).

	53.	Gelman, S. et al. Neural networks to learn protein sequence-function
relationships from deep mutational scanning data. Proc. Natl Acad. Sci. USA
118, e2104878118 (2021).

	54.	Gray, V. E., Hause, R. J., Luebeck, J., Shendure, J. & Fowler, D. M.
Quantitative missense variant effect prediction using large-scale mutagenesis
data. Cell Systems 6, 116–124 (2018).

	55.	Ingraham, J., Garg, V., Barzilay, R. & Jaakkola, T. Generative models for
graph-based protein design. In Proc. 33rd Conference on Neural Information
Processing Systems (NeurIPS 2019) Vol. 32 (NeurIPS, 2019).

	56.	Hardt, M. & Recht, B.Patterns, predictions, and actions: A story about
machine learning. Preprint at https://arxiv.org/abs/2102.05242 (2021).

	57.	Jumper, J. et al. Highly accurate protein structure prediction with alphafold.
Nature 596, 583–589 (2021).

	58.	Fannjiang, C. & Listgarten, J. Autofocused oracles for model-based design. In
Proc. 33rd Conference on Neural Information Processing Systems (NeurIPS
2020) Vol. 33 (NeurIPS, 2020).

	59.	Sugiyama, M., Krauledat, M. & Müller, K.-R. Covariate shift adaptation by
importance weighted cross validation. J. Mach. Learn. Res. 8, 985–1005 (2007).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2022

Nature Biotechnology | VOL 40 | JulY 2022 | 1114–1122 | www.nature.com/naturebiotechnology1122

https://arxiv.org/abs/2011.03443
https://doi.org/10.1101/2021.07.18.452833
https://doi.org/10.1101/2021.07.18.452833
https://doi.org/10.1101/2020.07.12.199554
https://arxiv.org/abs/2102.05242
http://www.nature.com/naturebiotechnology

ArticlesNaTurE BiOTEchnOlOgy

Methods
Evolutionary sequences. We use the MSAs provided by EVmutation23 whenever
possible. For the GFP, the only exception, we follow the same procedure as
EVmutation to gather sequences using the profile HMM homology search tool
Jackhmmer51. We determine the bit score threshold in Jackhmmer search with the
same criterion from EVmutation. In particular, for GFP, we started with 0.5 bits per
residue and subsequently lowered the threshold to 0.1 bits per residue to meet the
sequence number requirement (redundancy-reduced number of sequences ≥10L,
where L is the length of the aligned region). For sensitivity analysis, when using
the bit score to 0.5 bits per residue or increasing the number of iterations to 10,
the resulting MSAs on GFP still lead to similar downstream model performance
(data not shown).

Mutation effect data sets. Hopf et al.23 identified a list of mutation effect data sets
generated by mutagenesis experiments of entire proteins, protein domains and
RNA molecules. We exclude the data sets for RNA molecules and influenza virus
sequences, as well as excluding data sets that contain fewer than 100 entries, to
have meaningful train/test splits with at least 20 examples in test data. This leaves
us with 18 data sets from EVmutation.

Following the convention in EVmutation and DeepSequence, we exclude
sequences with mutations at positions that have more than 30% gaps in MSAs
to focus on regions with sufficient evolutionary data. On most data sets, this
excludes less than 10% of the data, although for a few proteins such as GFP this
affects as much as half of the positions. For example, on GFP, out of 237 positions,
only positions 15–150 pass the criterion of less than 30% gaps in the MSA.
Coincidentally, the selected position 15–150 region covers the 81 amino region
studied by Biswas et al.42.

Among those 18 EVmutation data sets, only two on the poly(A)-binding
protein activity34 and the UBE4B auto-ubiquitination activity50 include
higher-order mutants (even though EVmutation Supplemental Table 1 indicates
that the YAP1 WW domain 1 peptide binding data set also include higher-order
mutants, the supplemental data for YAP1 only contain single-mutant sequences
and no higher-order mutant data are available in the original publication31 either.)
While EVmutation only evaluates performance on the single mutants from the
UBE4B U-box domain data50, we also include higher-order mutants in evaluation.
Additionally, we also include a GFP fluorescence data set33, since GFP is a core
example used by Biswas et al.42. The GFP data also include higher-order mutants.
This results in 19 data sets total as listed in Supplementary Table 1.

Amino acid encodings. In addition to an overparameterized one-hot amino acid
encoding (one binary feature for each amino acid possibility per position), we also
experiment with the 19-dimensional physicochemical representation of the amino
acid space developed by Georgiev60, also used by Wittman et al.15. The features in
Georgiev representation are principal components of over 500 amino acid indices
from the AAIndex database61. As shown in Supplementary Fig. 8, the Georgiev
encoding achieves better performance than the one-hot amino acid encoding on
data sets with higher-order mutants when presented with sufficient training data
(bottom right), agreeing with previous findings15. However, on single-mutant only
data sets or on limited training examples, the Georgiev encoding leads to almost
identical performance to the one-hot encoding. For the augmented Potts model,
the Georgiev encoding also does not improve performance compared to the
one-hot encoding in any setting.

Since the other evaluated methods, such as EVmutation23, DeepSequence24 and
UniRep39, all use the one-hot amino acid encoding as inputs to their models, we
omit the Georgiev encoding results in the main text for fair comparison.

Linear model with one-hot encoded amino acid features. For a sequence
s = (s1, ⋯ , sL) of length L, with elements si ∈ A = { all amino acids }, the linear
model with one-hot encoded amino acid features maps the sequence to a scalar
regression output by

f(s;θ) = θ0 +
L∑

i=1

∑

a∈A

a(si)θi(a) = θ0 +
L∑

i=1
θi(si), (1)

where θ0 ∈ R is the bias term (which we deem not to be part of the encoding),
a(si) is an indicator function equal to 1 when a = si and to 0 otherwise, and

each θi ∈ R
|A| is an |A|-dimensional vector. Together, we refer to all of these

parameters as θ. Each coefficient, θi(a) ∈ R, corresponds to the effect of a amino
acid a at position i, and we use θi(si) to denote the coefficient corresponding to the
particular amino acid si.

This linear model is overparameterized by virtue of the one-hot encoding.
In particular, there are |A| × L + 1 parameters for at most (|A| − 1) × L + 1
degrees of freedom. Additionally, if not all amino acids are observed at all
positions in the training data, then the model will be correspondingly more
overparameterized. As a consequence of this overparameterization, further
constraints are needed to identify a unique solution. While there are different
approaches for adding constraints, we chose to use ℓ2-regularized regression (also
known as ridge regression). We used fivefold cross-validation to determine the
setting of the regularization parameter (λ below).

We deliberately chose to use this overparameterized approach over an approach
with |A| − 1 nonredundant features, for reasons that will be explained shortly.
Without regularization, this choice would be of no consequence. However, with
regularization, the choice becomes consequential—both for the linear model with
redundant one-hot encodings, and also for our augmented models that have a
similar component. The main consequence of this choice is in how the trained
model will make predictions on test sequences containing amino acids at positions
that were not observed in the training data. Next we explain this in more detail.

Effects of ℓ2 regularization on generalization. Minimizing the ℓ2-regularized
loss arising from the linear regression model in equation (1) is equivalent to
minimizing the following objective function,

g(θ) :=

N∑

n=1
(y(n) − f(s(n);θ))2 + λ

L∑

i=1

∑

a∈A

θi(a)2, (2)

where the scalar λ is the regularization hyper-parameter that dictates the strength
of the regularization and (s(n), y(n)) are the sequence-fitness pairs observed in the
training data.

Generally, we think of ℓ2-regularized linear regression as tantamount to putting
a spherical Gaussian prior on the regression parameters and obtaining a point
estimate of the parameters, if one is a Bayesian. Alternatively, one may view it as
a shrinkage penalty that pushes the weights toward zero. However, in the specific
context herein—of an overparameterized model with one-hot encoded features—
the ℓ2 regularization has some further interesting properties that are not widely
known. First, the use of any positive value for λ in the ℓ2 regularization in this
context implies that at any given position, i, the optimal parameters, θ̂i(a) (that is,
those that minimize equation (2)), at that position, sum up to zero. We refer to this
as the zero-sum condition, which we now more formally define and prove, before
discussing its consequences in more detail.

Lemma 1. For the zero-sum condition, let θ̂ be the optimal parameters that
minimize the ℓ2-regularized linear regression objective (equation (2)) on a linear
model with one-hot encoded amino acid features (equation (1)). For any position i,
the coefficients over all the amino acids always sum to zero. That is,

∑

a∈A

θ̂i(a) = 0.

Proof. By first-order optimality conditions, at a solution to equation (2), all of the
partial derivatives of the ℓ2-regularized objective (equation (2)) must all be equal
to zero, namely,

∂g(θ)
∂θ0

=

∂
N∑

n=1
(y(n) − f(s(n);θ))2

∂θ0

∣∣∣∣∣∣∣∣∣
θ=θ̂

= 0, and (3)

∂g(θ)
∂θi(a) =

∂
N∑

n=1
(y(n)−f(s(n) ;θ))2

∂θi(a)

∣∣∣∣∣∣
θ=θ̂

+ 2λθ̂i(a) = 0 for all

i = 1, …, L and all a ∈ A.

(4)

Furthermore, the sum of the indicator functions appearing in equation (1), for
position i, over all amino acids, is always equal to one,

∑

a∈A

a(si) = 1, (5)

from which we see that

∑

a∈A

∂f(s;θ)
∂θi(a)

=
∑

a∈A

∂(θ0 +
L∑

i=1
θi(si))

∂θi(a)
=

∑

a∈A

a(si) = 1. (6)

It also straightforwardly holds that the partial derivative of the model with respect
to the bias is always equal to one, and therefore by the previous result is also equal
to the sum of partial derivatives,

∂f(s;θ)
∂θ0

=
∂(θ0 +

∑L
i=1 θi(si))

∂θ0
= 1 =

∑

a∈A

∂f(s;θ)
∂θi(a)

. (7)

It therefore follows by two applications of the chain rule that for any value of θ,

∂
∑N

n=1 (y
(n)

− f(s(n);θ))2

∂θ0
= −2

N∑

n=1
(y(n) − f(s(n);θ0))

∂f(s(n);θ)
∂θ0

(8)

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology

Articles NaTurE BiOTEchnOlOgy

= −2
N∑

n=1
(y(n) − f(s(n);θ))

∑

a∈A

∂f(s(n);θ)
∂θi(a)

(9)

=
∑

a∈A

−2
N∑

n=1
(y(n) − f(s(n);θ)) ∂f(s

(n);θ)
∂θi(a)

(10)

=
∑

a∈A

∂
∑N

n=1 (y
(n)

− f(s(n);θ))2

∂θi(a)
. (11)

Now, more specifically at the optimal θ̂ that minimizes the objective, combining
equation (3) with equation (11), we have

∑

a∈A

∂
N∑

n=1
(y(n) − f(s(n);θ))2

∂θi(a)

∣∣∣∣∣∣∣∣∣
θ=θ̂

=

∂
N∑

n=1
(y(n) − f(s(n);θ))2

∂θ0

∣∣∣∣∣∣∣∣∣
θ=θ̂

= 0, (12)

which when combined with equation (4), shows that

2λ
∑

a∈A

θ̂i(a) = 0. (13)

Therefore, so long as λ > 0, the ℓ2-regularized solution must satisfy the zero-sum
condition stated above, ∑

a∈A

θ̂i(a) = 0.

Generalization to mutations not seen at train time. If amino acid, α, at position i
was not seen in the training data, then ridge regression sets θ̂i(α) = 0, so as to
minimize the ℓ2 penalty (Lemma 2, below). While we use a to generally denote
amino acids, we use α to specifically refer to amino acids that are not seen at
position i in the training data. A consequence of this property, jointly with the
zero-sum condition, is that the effect, θ̂i(α), of mutation α at position i on the
predicted fitness, is precisely equal to the average effect of all amino acids seen at
train time at that position, namely, θ̂i(α) = 1

|Atrain
i |

∑
a∈Atrain

i
θ̂i(a) (Proof below),

where Atrain
i denotes the set of all amino acids (including the wild-type) seen at

position i in the training data.
Consequently, the model will generalize to unseen amino acids at a given

position in a manner that ‘understands’ how mutable a site is, where mutability
is the ability of the site to tolerate mutations while maintaining fitness. That is,
if a given site tends to yield poor fitness when mutated, then its average training
data effect will tend to be poor and the extrapolated fitness at test time to a new
amino acid will be predicted to be poor. To explain how much that information
(mutability at a site) might perform on its own, we also tried a predictive model
consisting of nothing but the position of the mutation (0/1) in a linear regression
model (Extended Data Fig. 10 and Supplementary Figs. 9–11). We found that this
model is very predictive given that it is unaware of the specifics of any particular
amino acids. In particular, it performs close to, but slightly worse than the linear
model with one-hot encoded amino acid features. Notably, use of a nonredundant
encoding in the same ℓ2 modeling framework would not enable such predictions
based on mutability to be made. In particular, in using one parameter per possible
mutation from wild-type at each position, the model would predict zero effect for
mutations not seen at train time.

The mechanism for the site-specific generalization described above is similarly
present in the augmented models because of their ℓ2-regularized linear regression
with one-hot encoded features, which retain an analog to these properties even
when augmented with a density feature. Note that one might consider altering the
regularization to a more nuanced version wherein the emergent average amino
acid prediction at a site is weighted in a manner to account for chemical similarity
of amino acids, their frequency in the training data and so forth.

Lemma 2. For the site-specific generalization effect, let Atrain
i denote the set of

all amino acids (including the wild-type (WT)) seen at position i in the training
data Dtrain. Let α /∈ A

train
i be an amino acid at position i that was not seen in the

training data. For the optimal parameters θ̂ that minimize the ridge regression
objective, we must have θ̂i(α) = 0. Furthermore, θ̂i(α) is the average effect of all
seen amino acids at that position in the sense that

θ̂i(α) =
1

|Atrain
i |

∑
a∈Atrain

i

θ̂i(a)

and

θ̂i(α) − θi(aWT) =
1

|A
train
i |

∑
a∈Atrain

i

(θ̂i(a) − θi(aWT))

.

Proof. For an amino acid α that was not seen at position i in the training data, since
s(n)i ̸= α for any sequence s(n) in the training data, the first term in the objective
function (equation (2)) does not depend on θi(α). From the first-order optimality
condition we therefore have

∂g(θ)
∂θi(α)

∣∣∣∣
θ=θ̂

= 2λθ̂i(α) = 0 ⇒ θ̂i(α) = 0.

From the zero-sum condition,
∑

a∈Atrain
i

θ̂i(a) +
∑

a /∈Atrain
i

θ̂i(a) = 0. (14)

Since θ̂i(a) = 0 for a /∈ A
train
i , we are then left with

∑

a∈Atrain
i

θ̂i(a) = 0. (15)

Therefore, for any α /∈ A
train
i

θ̂i(α) = 0 =
1

|Atrain
i |

∑

a∈Atrain
i

θ̂i(a). (16)

If we prefer to consider instead the mutational effect relative to wild-type, then we
can obtain an analogous result simply by subtracting θi(aWT) from both sides of the
above equation (where aWT denotes the wild-type amino acid), to get

θ̂i(α) − θi(aWT) =
1

|A
train
i |

∑

a∈Atrain
i

(θ̂i(a) − θi(aWT)), (17)

indicating that the results are true both for absolute and relative effects.

EVmutation Potts model. Briefly, EVmutation learns a sequence distribution
under site-specific constraints and pairwise constraints for each protein family.
Under a Potts model (also sometimes known as a generalized Ising model) with
alphabet A, the probability of a sequence s = (s1, · · · , sL) ∈ A

L of length L is
given by a Boltzmann distribution:

P(s) =
1
Z

exp{−H(s)}, H(s) = −

L∑

i<j
Jij(si, sj) −

L∑

i
hi(si)

where Z is a normalization constant, hi ∈ R
|A| are site-specific amino

acid-specific parameters, Jij ∈ R
|A|×|A| are pair-specific amino acid-specific

parameters and si ∈ A indicates the amino acid at position i. The h and J
parameters are estimated by regularized maximum pseudo-likelihood. See ref. 23
for the full modeling fitting details of sequence reweighting, pseudo-likelihood
approximation, regularization and optimization. We use the same plmc package
(May 2018) as EVmutation to fit Potts models with default parameters.

Under the assumption that learned sequence probabilities are correlated with
sequence fitness, EVmutation predicts the mutation effect of a mutant according
to the log-odds ratios of sequence probabilities between the wild-type and
mutant sequences, which is equivalent to the log-likelihood of the mutant up to
a constant.

Profile HMMs. Profile HMMs62 are probabilistic models that capture
position-specific information about the amino acid distribution at each site,
assuming that the amino acid at a particular position is independent of the amino
acid at all other positions. Compared to Potts models, profile HMMs do not
contain pairwise interactions and are also referred to as the independent model
or the independent site model. We evaluated the HMMER suite profile HMM
implementation51 and the EVmutation independent model implementation23
on the same evolutionary sequences. There is a minor performance difference
(Supplementary Fig. 12) between the two implementations due to algorithmic
differences, and the ‘profile HMM’ and ‘augmented HMM’ methods in this paper
are based on the HMMER version.

DeepSequence VAE. Similar to EVmutation, DeepSequence24 also models a
sequence distribution for each protein family and predicts mutation effects
according to approximations of log-odds ratios of sequence probabilities between
the wild-type and mutant sequences. Here, the sequence distribution is modeled
by a nonlinear VAE model with a multivariate Gaussian latent variable z. A neural
network parameterizes the conditional distribution P(s∣z, θ), and the sequence
likelihood P(s∣θ) is then

P(s|θ) =

∫
P(s|z, θ)P(z)dz. (18)

While the exact log-likelihoods are intractable, they are lower-bounded by the
evidence lower bound (ELBO)

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology

ArticlesNaTurE BiOTEchnOlOgy

L(ϕ;s) = Eq[log p(s|z, θ)] − DKL(q(z|s,ϕ)||p(z)),

where q(z∣s, ϕ) is a variational approximation for the posterior distribution p(z∣s, θ)
that is also modeled by a neural network. As an approximation to log-likelihoods,
the ELBO can also be used to predict mutation effects. Whenever possible, we use
the available ensemble predictions from DeepSequence24. For the GFP, the UBE4B
U-box domain and the BRCA1 ring domain, we followed the DeepSequence
code in Theano and parameters to train an ensemble of VAE models (five models
with different random seeds). When computing the evidence-based lower bound
(ELBO) as sequence log-likelihood estimations, we follow DeepSequence to take
the average of 2,000 ELBO samples (400 samples from each of the five VAE models
in the ensemble).

eUniRep mLSTM. The UniRep39 mLSTM can also be viewed as a sequence
distribution. Given the first i amino acids of a sequence, a neural network
parameterizes the conditional probabilities of the next amino acid P(si+1∣s1 ⋯ si).
From the conditional probabilities we can also reconstruct the sequence probability
as

P(s) = ΠL
i=1P(si|s1 · · · si−1).

For convenience, artificial start and stop tokens are added at the two ends of
sequences. Under this probabilistic interpretation, the unsupervised pretraining
on UniRef50 sequences with next-step predictions is equivalent to finding model
parameters that maximize likelihood on UniRef50 sequences. We omit the
performance of the pretrained (not evo-tuned) UniRep model in our results since
generally it is largely outperformed by the eUniRep described below.

To adapt the UniRep model to specific protein families, Biswas et al.42 propose
the ‘evo-tuning’ procedure, which fine-tunes the UniRep model by minimizing
the same next-step prediction loss on evolutionary sequences in addition to on
UniRef50 sequences. Following the naming convention42, We refer to the model
after ‘evo-tuning’ as eUniRep. After fine-tuning, Biswas et al.42 then perform
supervised regression with the 1,900-dimensional average embeddings (averaged
over sequence length axis) from the final hidden layer in the eUniRep model as
regression features.

While the original fine-tuning procedure for eUniRep42 optimizes for next-step
prediction loss on entire evolutionary sequences up to length 500 (discarding
longer sequences), we find that next-step prediction on aligned portions of
evolutionary sequences (with gaps included as gap tokens) works as well on GFP
and beta-lactamase (Supplementary Fig. 13), and therefore fine-tune on only
aligned portions to lower computational costs as the mLSTM memory usage scales
quadratically with respect to sequence length. We used the open-source UniRep
code in tensorflow.

For each protein family, we randomly split the evolutionary sequences from the
MSA into an 80% training set and a 20% validation set to check for over-fitting.
When training for 10,000 gradient steps with the same learning rate 1 × 10−5 as
Biswas et al.42, the validation loss eventually plateaus but does not increase. Since
the validation loss typically plateaus before 10,000 steps, we chose to stop training
at 10,000 steps.

ESM-1b transformer. The ESM-1b transformer40 is pretrained on UniRef50
representative sequences with the masked language modeling objective, where a
fraction (15%) of amino acids in each input sequence are masked and the model
is trained to predict the missing tokens. We chose the ESM-1b model to represent
transformers as it has the best performance on downstream secondary structure
prediction and contact prediction tasks40 among transformers from previous
studies38,48 and other transformer architectures tested. While the original mutation
effect prediction results40 were based on the older 34-layer ESM-1 model, we found
that ESM-1b slightly improves performance over the ESM-1 model (data not
shown).

When using transformer models for sequence-fitness predictions, Rives et al.40
mask the mutated positions and used the difference in conditional log-likelihoods
(conditioned on nonmutated amino acids) between the mutated amino acids and
the wild-type amino acids as fitness prediction. We explain below that this could be
viewed as an approximation for pseudo-log-likelihoods (PLLs).

Masked token language models can also be viewed as sequence distributions,
where the sequence distribution is implicitly represented by conditional likelihoods
P(si∣s−i), where s−i indicates all other sequence positions excluding position i, that is,
s−i = s1 ⋯ si−1si+1 ⋯ sL.

Since exact likelihoods are too computationally expensive for Transformers,
we resort to pseudo-likelihoods. In general, given a sequence s of length L, its
pseudo-likelihood63 is defined as the product of conditional likelihoods for each
site. Hence, the pseudo-log-likelihood of a sequence s is

PLL(s) =

L∑

i=1
log P(si|s−i).

However, even the evaluation of PLLs is computationally expensive, since it
requires L inferences for a sequence of length L. As a more computationally

efficient approximation, we only compute conditional likelihoods on the mutated
positions, and then use the difference between the conditional log-likelihoods
of the mutated sequence and the wild-type sequence as an approximation for
PLLs. More specifically, for a mutant sequence ϕ and wild-type sequence σ, we
approximate the PLL difference by the following, as equivalent to the existing
formula used by Rives et al.40:

PLL(ϕ) − PLL(σ) =
ℓ∑

i=1
log P (ϕi|ϕ−i) −

ℓ∑
i=1

log P (σi|σ−i)

=
∑

i:ϕi ̸=σ i

(log P (ϕi|ϕ−i) − log P (σi|σ−i))

+
∑

i:ϕi=σ i

(log P (σi|ϕ−i) − log P (σi|σ−i))

︸ ︷︷ ︸
≈0

The underlying assumption here is that the conditional log-likelihoods of
wild-type amino acids on mutant backgrounds are roughly the same as on
wild-type backgrounds. While this might be accurate for mutant sequences that
are close enough to wild-type sequences, in general there is no support for this
approximation on high-order mutant sequences and the full PLLs will likely be
more accurate for mutation effect predictions.

For supervised learning, we evaluated two approaches with the same
Transformer model. The first one (‘fine-tuned transformer’) is to fine-tune the
entire Transformer model with fitness labels as done by Rives et al.40, using the
PLL difference between the mutant and the wild-type as a predictor for fitness. We
perform 20 epochs of supervised fine-tuning with learning rate 3 × 10−5 and with
early stopping according to validation Spearman correlation, using the open-source
ESM code in PyTorch. For a given training data size, we keep 20% of the data
for validation (early stopping) and use the remaining 80% for fine-tuning. Using
Spearman correlation as opposed to validation loss for early stopping is crucial for
performance, especially on small data sizes. Although the implementation details
might not exactly match those from Rives et al. (since the fine-tuning code is not
available), we show that our method is able to reproduce the same results on most
of the Envision data sets used by Rives et al., as shown in Supplementary Fig. 14.

In the second approach (‘augmented transformer’), while keeping the
transformer model constant, we concatenate the PLL difference inferred from the
pretrained (not fine-tuned) model together with one-hot amino acid encoding as
features for regression.

We also attempted unsupervised fine-tuning (‘evo-tuning’) of the ESM-1b
transformer model on evolutionarily related sequences from MSAs, although our
preliminary efforts on β-lactamase and PABP-RRM do not result in improved
performance (data not shown).

Integrated (tied-energy) Potts model. The integrative approach44 for Potts models
optimizes the joint log-likelihood for model parameters on both evolutionary data
and labeled data. Given evolutionary sequences σ1, ⋯ , σM, the log-likelihood on
evolutionary data is

log P(σ1, · · · , σM
|J, h) = −

M∑

k=1
H(σk

) − MlogZ ,

where

H(σ) = −

L∑

i<j
Jij(σi , σj) −

L∑

i
hi(σi).

On the other hand, given sequence-fitness pairs (s1, y1), ⋯ , (sN, yN), assuming
independent and identically distributed Gaussian noise drawn from N (0,Δ2), the
log-likelihood on labeled data is

log P(s1, · · · , sM, y1, · · · , yM|J, h) = −
1

2Δ2

N∑

k=1
[yk − H(sk)]2 − N

2 log (2πΔ2
).

The integrated Potts model is learned by maximizing the joint log-likelihood
log P(σ1, · · · , σM|J, h) + log P(s1, · · · , sM, y1, · · · , yM|J, h) with ℓ2-regularization.

The noise variance Δ2 determines the relative weighting between the two
losses in the joint log-likelihood. Using existing notation44, the relative weighting
parameter is

λ =
1

1 + Δ2 .

In practice, since we do not know the noise variance, we use 20% of the training
data for validation and choose the best λ according to Spearman correlation on
validation set. Another practical complication is that we only have fitness labels
that are up to some monotonic transformation from the energies. Following
Figliuzzi et al.30, we use a monotonic mapping between sorted energy values and
sorted fitness labels.

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology

Articles NaTurE BiOTEchnOlOgy

Following recommendations from the authors, the Potts model parameters are
initialized with parameters estimated by pseudo-likelihood. Before introducing
labeled data, we first give the model a warm start by training 500 iterations only
on evolutionary data. Then, we optimize the regularized joint log-likelihood for
100 iterations for each λ value. The only exception is for β-glucosidase, where
the protein sequences are too long (>500 amino acids) and lead to very high
memory consumption and long run-time (>2 days) for the integrated Potts model.
Therefore, for β-glucosidase alone we use the Potts model performance without
labeled data as a substitute for the integrated model performance.

We follow the publicly available code (https://github.com/PierreBarrat/
DCATools/tree/master/src) with slight modifications to use zero-sum gauge
instead of wild-type gauge for Potts models. In Potts models for categorical
variables, there are more free parameters than independent constraints, and gauge
fixing refers to reducing the number of independent parameters to match the
number of independent constraints64. The wild-type gauge forces all parameters
corresponding to wild-type amino acids to be zero, while the zero-sum gauge
requires

∑
ω∈A

hi(ω) = 0 and
∑

ω∈A
Jij(ω, α) =

∑
ω∈A

Jij(α, ω) = 0. When
there is regularization involved, different gauge fixings lead to nonequivalent
models. Although gradient calculations are easier in the wild-type gauge, we found
that the zero-sum gauge led to better predictive performance (Supplementary
Fig. 15) and hence adopted the zero-sum gauge.

Alternative tied-energy models. In addition to integrated Potts models, we
also evaluate alternative ways to train a density model of a protein family and a
predictive model of fitness in an integrated fashion (Supplementary Fig. 16). Rather
than using a fixed and possibly incorrect monotonic mapping between sorted
energy values and sorted fitness labels30, we consider a differentiable proxy of the
Spearman correlation65 between the predicted and true fitness values. Specifically,
given N sequence-fitness pairs, (s1, y1), ⋯ , (sN, yN), let (s1, r(y1)), ⋯ , (sN, r(yN)) denote
the corresponding sequence-ranking pairs, where r(yk) ∈ {1, …, N} gives the rank in
descending order of the value yk among the values {y1, …, yN}. We fit a Potts model
by optimizing the joint loss

1
M

log P(σ1, · · · , σM
|J, h) + λ

1
N

N∑

k=1
[r(yk) − r̂(H(sk))]2

with ℓ2-regularization, where ̂r(H(sk)) is a differentiable proxy65 of the rank
r(H(sk)). For tractability, we optimize the pseudo-likelihood approximation
of the log-likelihood term in the joint loss. We choose the value of
λ ∈ {0.0001, 0.001, 0.01, 0.1, 0.9} with fivefold cross-validation.

To explore the effect of training energy-based models other than the Potts
model in this fashion, we use the same procedure to fit an energy-based model
with an energy function parameterized by a two-layer feed-forward neural
network with hidden layer sizes of (300, 100) and rectified linear activation
function activations. As with the Potts model, we optimize the pseudo-likelihood
approximation of the log-likelihood term in the joint loss.

BLOSUM62 substitution scores. For a mutant sequence, we sum the BLOSUM62
substitution scores between every amino acid in the wild-type sequence and the
mutant sequence. The scores are then offset by the a constant such that a score of
zero is obtained for the wild-type sequence.

Augmented models. For augmentation, we rely on an already-trained probability
density model on a set of evolutionarily related sequences, that does not get altered.
To augment this existing density model, we concatenate the sequence density
estimation from the original model together with one-hot encoded site-specific
amino acid features, as illustrated in Fig. 1b. Mathematically, following the same
notation for linear models with one-hot encoded features, given a density model
with sequence probability distribution p(s; φ) and fixed density model parameters
φ, the corresponding augmented model is

f(s;φ, θ, β) = βlog P(s;φ) + θ0 +
L∑

i=1
θi(si),

where the parameters θi ∈ R
|A|, θ0 ∈ R and β ∈ R are learned from

assay-labeled data. When performing ridge regression with this augmented
model, the regularization strength for β was set to make this feature practically
unregularized (regularization strength, 10−8), while the other parameters, θ,
were regularized using a common strength determined by cross-validation. For
density models where computing exact log-likelihoods is challenging, we use
one of various approximations. For Potts models and transformers, we use the
pseudo-log-likelihood, and for VAEs, the ELBO. Similar to the setup of a linear
model with one-hot encoded site-specific amino acid features, we again used the
overparameterized one-hot site-specific amino acid encoding with |A| features
per position (one binary feature for each amino acid possibility per position) in
combination with ℓ2 regularization. See the section on Effects of ℓ2 regularization
on generalization above for more details on how this choice influences model
prediction on mutations not seen in the training data.

The augmented Potts model as an evolutionary prior for linear regression.
One can view the augmented Potts model as a tailoring of the implicit prior in
the ℓ2-regularized (ridge) linear regression with site-specific amino acid features,
where the tailoring is based on evolutionary information from the density model.
First, note that in the Bayesian, maximum a posteriori (MAP) interpretation of
ridge regression, a zero-mean Gaussian prior probability has been given to the
ridge regression parameters, θi(α) ≈ N (0, τ2). Now consider the augmented
Potts model, with already-fitted Potts model, p(s; φ ≡ {hi, Jij}), with site-specific
parameters, {hi(α)} at position i for amino acid α and analogous coupling
parameters, {Jij(α1, α2)}. If in the augmented Potts model, the Potts model density
feature was independent from the site-specific amino acid features, one could in
a two-step procedure first fit the density-associated parameter, β = β̂ ∈ R, and
having fit that, then fit the remaining parameter vector, θ. Under the independence
assumption, the resulting parameter estimates from the two-step procedure would
be identical to having estimated them jointly as in regular ridge regression (with no
regularization on the density feature, as done for the augmented Potts model). In
such a two-step fitting procedure, the second step would correspond to performing
ridge regression on the residuals y′ = y − β̂log p(s;φ). Correspondingly,
the implicit prior of ridge regression gets tailored by shifting its mean by an
amount, β̂h̃i(α), corresponding to the Potts model site-specific parameters, to
back-interpret the prior over the parameters to be θi(α) ≈ N (β̂h̃i(α), τ2). Note
that the effect of the coupling parameters in the Potts model is entirely mediated
through the estimate of β̂. Also note that the assumption of independence of the
Potts model density feature from the other features is unlikely to be true in most
practical cases; however, this does not necessarily detract from the overall intuitive
interpretation.

Model evaluation. For each data set, we randomly sample 20% of the data set
as held-out test data. Among the remaining 80% data, we randomly sample
N = 24, 48, 72, 96, ⋯ , or 240 single-mutant sequences as training data in separate
experiments, or use all single-mutant sequences in the 80% training data in the
80/20 split experiments. When computationally feasible (for the linear model,
eUniRep regression, and all augmented models), we use fivefold cross-validation
to determine hyperparameters. Otherwise, for the fine-tuned transformer and
the integrated Potts model, we set aside 20% of the training data to determine
hyperparameters (that is, the number of fine-tuning epochs for the transformer
and the relative weighting between evolutionary and assay-labeled data for
the integrated Potts model). For each fixed sample size, the model evaluation
procedure is repeated 20 times with different random seeds for uncertainty
estimation. The only exception is for the integrated Potts model, where we only use
five random seeds due to the long computation time. The 95% confidence intervals
of the means are estimated via bootstrapping.

NDCG. DCG and its normalized version, NDCG, are both widely used measures
of ranking quality in information retrieval. NDCG has also recently been used in
the protein engineering community to assess fitness prediction15. The NDCG score
can be seen as a smoothed version of the mean fitness of the top k predictions,
without having to fix an arbitrary k. In the top k mean metric, the true fitness
values of variants are summed with a binary weight of either 1/k or 0 depending
on whether the variant is in the top k or not. Instead of the binary weight, NDCG
sums over the variants with a smoothed logarithmic weight.

Given a model’s prediction on M protein variants, to calculate DCG we first
sort all variants by predicted scores into an ordered rank list ŷ1 ≥ ŷ2 ≥ · · · ≥ ŷM.
Then, DCG sums the true fitness values y with a logarithmic discount according to
the rank order, where a variant’s true fitness value contributes more to the sum if it
is more highly ranked,

DCG =

M∑

i=1

yi
log(i + 1) .

The best (highest) possible DCG on a set of M protein variants occurs when
all protein variants are predicted to be in the exact same rank order as the true
fitness. On different data sets, the value of the best possible DCG is different,
depending on the true fitness values in the data set. Consequently, the DCG is
often normalized to make the values more comparable between data sets. To do so,
we first standardize the true scores y to have zero mean and unit variance. Then,
we normalize the DCG by dividing by the best possible DCG (that is, obtained for
a perfect ranking) to obtain the NDCG, which therefore lies between 0 and 1 for
all data sets.

As an example, consider three protein variants A, B and C with the respective
true fitness values, −0.8, 0.6 and 0.2, and predicted fitness values, 0.1, 0.9 and −0.1.
First we sort them in predicted order B > A > C. Then the DCG from the predicted
model is 0.6/log (2) + (−0.8)/log (3) + 0.2/log (4) = 0.195, while the ideal DCG
from the perfect ranking is 0.6/log (2) + 0.2/log (3) + (−0.8)/log (4) = 0.326.
The ratio between the DCG and the ideal DCG, 0.195/0.326 = 0.598, is then the
NDCG.

Mann–Whitney U-test. We use the two-sided nonparametric Mann–Whitney
U-test for comparing average performance between different methods. The null

Nature Biotechnology | www.nature.com/naturebiotechnology

https://github.com/PierreBarrat/DCATools/tree/master/src
https://github.com/PierreBarrat/DCATools/tree/master/src
http://www.nature.com/naturebiotechnology

ArticlesNaTurE BiOTEchnOlOgy

hypothesis of the U-test is that, for randomly selected values X and Y from two
populations, the probability of X being greater than Y is equal to the probability
of Y being greater than X. The alternative hypothesis is that one population
is stochastically greater than the other. In the context of Fig. 2, since we are
comparing the average performance over all data sets, the population consists
of the average performance of a given method computed from different random
seeds. This satisfies the assumption that the observations in each population are
independent of each other.

FoldX. The FoldX suite20 evaluates the effect of mutations on the stability of
proteins. To derive stability features from FoldX, we use the ‘total energy’ output
from the BuildModel command in FoldX 5.0. We used Protein Data Bank (PDB)
structure 2WUR for the GFP following Sarkisyan et al.33, and PDB structures 6R5K
and 2KR4 for the poly(A)-binding protein RRM domain and the ubiquitination
factor E4B U-box domain, respectively. Unfortunately, among these three proteins,
only the GFP has atomic resolution structure determined by X-ray crystallography.
The only structures available for the other two domains are determined by
nuclear magnetic resonance and electron microscopy at lower resolutions.
Higher-resolution structures could potentially make FoldX-derived features more
useful on those two domains.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
All protein fitness data were publicly available through citations available in the
paper. A processed version of these data and our evaluation results are available
on Dryad with https://doi.org/10.6078/D1K71B. All protein structures used in the
study are available publicly with PDB IDs 2WUR, 6R5K and 2KR4.

Code availability
The code to reproduce the results is available at https://github.com/chloechsu/
combining-evolutionary-and-assay-labelled-data.

References
	60.	Georgiev, A. G. Interpretable numerical descriptors of amino acid space. J.

Comput. Biol. 16, 703–723 (2009).
	61.	Kawashima, S. et al. Aaindex: amino acid index database, progress report

2008. Nucleic Acids Res. 36, D202–5 (2007).
	62.	Eddy, S. R. Profile hidden Markov models. Bioinformatics 14,

755–763 (1998).
	63.	Besag, J. Statistical analysis of non-lattice data. J. Royal Stat. Soc.: Ser. D.

Statistician 24, 179–195 (1975).

	64.	Stein, R. R., Marks, D. S. & Sander, C. Inferring pairwise interactions from
biological data using maximum-entropy probability models. PLoS Comput.
Biol. 11, e1004182 (2015).

	65.	Blondel, M., Teboul, O., Berthet, Q. & Djolonga, J. Fast differentiable sorting
and ranking. In Proc. International Conference on Machine Learning (eds Hal,
D., III & Aarti, S.) 950–959 (PMLR, 2020).

Acknowledgements
We thank A. Aghazadeh, P. Almhjell, F. Arnold, A. Busia, D. Brookes, M. Jagota, K.
Johnston, L. Schaus, N. Thomas, Y. Wang and B. Wittmann for helpful discussions. We
also thank P. Barrat-Charlaix, S. Biswas, J. Meier and Z. Shamsi for providing helpful
details about their methods and implementations. Partial support was provided by the
US Department of Energy, Office of Biological and Environmental Research, Genomic
Science Program Lawrence Livermore National Laboratory’s Secure Biosystems Design
Scientific Focus Area under grant award no. SCW1710 (J.L., C.H.), the Chan Zuckerberg
Investigator program (J.L.) and C3.ai (J.L., H.N.). Research reported in this publication
was supported by the National Library Of Medicine of the National Institutes of Health
under grant award no. T32LM012417 (H.N.). The content is solely the responsibility of
the authors and does not necessarily represent the official views of the National Institutes
of Health. This material is based on work supported by the National Science Foundation
Graduate Research Fellowship Program under grant no. DGE 2146752 (C.F.).

Author contributions
C.H. and J.L. conceptualized the study and developed the methodology. C.H.
implemented models and analyzed data, with contributions from H.N. and C.F. All
authors wrote the paper.

Competing interests
J.L. is on the Scientific Advisory Board of Patch Biosciences and Foresite Laboratories.
The remaining authors declare no competing interests.

Additional information
Extended data are available for this paper at https://doi.org/10.1038/
s41587-021-01146-5.

Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41587-021-01146-5.

Correspondence and requests for materials should be addressed to Chloe Hsu or
Jennifer Listgarten.

Peer review information Nature Biotechnology thanks the anonymous reviewers for their
contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Nature Biotechnology | www.nature.com/naturebiotechnology

https://doi.org/10.2210/pdb2WUR/pdb
https://doi.org/10.2210/pdb6R5K/pdb
https://doi.org/10.2210/pdb2KR4/pdb
https://doi.org/10.6078/D1K71B
https://doi.org/10.2210/pdb2WUR/pdb
https://doi.org/10.2210/pdb6R5K/pdb
https://doi.org/10.2210/pdb2KR4/pdb
https://github.com/chloechsu/combining-evolutionary-and-assay-labelled-data
https://github.com/chloechsu/combining-evolutionary-and-assay-labelled-data
https://doi.org/10.1038/s41587-021-01146-5
https://doi.org/10.1038/s41587-021-01146-5
https://doi.org/10.1038/s41587-021-01146-5
http://www.nature.com/reprints
http://www.nature.com/naturebiotechnology

Articles NaTurE BiOTEchnOlOgy

Extended Data Fig. 1 | Performance of existing methods and the augmented Potts model with NDCG. Analog of Fig. 2, but using NDCG instead of
Spearman correlation. (a) Average performance across all 19 data sets, as measured by NDCG. The horizontal axis shows the number of supervised
training examples used. Error bars are centered at the mean and indicate bootstrapped 95% confidence intervals estimated from 20 random splits of
training and test data. Asterisks (*) indicate that P < 0.01 among all two-sided Mann-Whitney U tests that the augmented Potts model has different
performance from each other method, at a given sample size. In particular, the largest such p-value for each training set size was respectively,
P = 3.9 × 10−2, 6.9 × 10−7, 2.2 × 10−7, 7.9 × 10−8, 7.7 × 10−4, 6.8 × 10−8, 6.8 × 10−8, 6.8 × 10−8 and P = 7.7 × 10−4 for the 80-20 split. (b) Average performance
across all three data sets containing double mutant sequences (sequences that are two mutations away from the wild-type), and restricted to testing on
only double mutants.

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology

ArticlesNaTurE BiOTEchnOlOgy

Extended Data Fig. 2 | Performance on individual data sets when trained on limited labeled data. A breakdown of averaged Spearman correlation results
presented in Fig. 2a by individual data set. See Supplementary Fig. 1 for the analogous plot using NDCG. Error bands are centered at mean and indicate
bootstrapped 95% confidence interval from 20 random data splits.

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology

Articles NaTurE BiOTEchnOlOgy

Extended Data Fig. 3 | Performance on individual data sets when trained on 80% data. A breakdown of averaged Spearman correlation results presented
in the right-side mini-panel in Fig. 2a, on 80-20 splits, by individual data set. See Supplementary Fig. 2 for the analogous plot using NDCG. Error bars
indicate bootstrapped 95% confidence interval from 20 random data splits. Box-and-whisker plots show the first and third quartiles as well as median
values. The upper and lower whiskers extend from the hinge to the largest or smallest value no further than 1.5 x interquartile range from the hinge.

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology

ArticlesNaTurE BiOTEchnOlOgy

Extended Data Fig. 4 | Augmented approach using different probability density models, with NDCG. Analogous to Fig. 3, but using NDCG. Methods are
compared with their augmented counterpart, using matching colors on each pair. Flat, horizontal lines represent evolutionary density models that do not
have access to assay-labeled data. Dashed lines indicate existing methods. Error bars are centered at the mean and indicate bootstrapped 95% confidence
interval from 20 random data splits.

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology

Articles NaTurE BiOTEchnOlOgy

Extended Data Fig. 5 | Performance on individual data sets with NDCG. Analogous to Fig. 4, but using NDCG. (a) Other than the EVmutation Potts model,
the DeepSequence VAE, and Profile HMM, none of which use supervised data, all other methods here used 240 labeled training sequences. Each colored
dot is the average NDCG from 20 random train-test splits. Random horizontal jitter was added for display purposes. The bottom row of black dots indicates
the effective MSA size determined by accounting for sequence similarity with sample reweighting at 80% identity cutoff. (b) Summary of how often each
modeling strategy had maximal NDCG. Such modelling strategies were determined by first identifying the top-performing strategy for any given scenario,
and then also identifying any other strategy that came within the 95% confidence interval of the top performer.

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology

ArticlesNaTurE BiOTEchnOlOgy

Extended Data Fig. 6 | The distribution of best model(s) on each data set. Analogous to Fig. 4b, but varying the number of assay-labeled training
examples. (a) Summary of how often each modelling strategy had maximal Spearman correlation. Such modelling strategies were determined by first
identifying the top-performing strategy for any given scenario, and then also identifying any other strategy that came within the 95% confidence interval of
the top performer. Four settings are used: with no assay-labeled data, when training on 48 or 240 assay-labeled single-mutant examples, and in the 80-20
train-test split setting. (b) Summary of how often each modelling strategy had maximal NDCG.

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology

Articles NaTurE BiOTEchnOlOgy

Extended Data Fig. 7 | Extrapolation performance from single and double mutants to higher-order mutants. Analogous to Fig. 5, but training on a
random sample from both single and double mutants. Each column shows the performance when training on randomly sampled single mutants and then
separately testing on single, double, or triple mutants, none of which were in the training data. The total size (TS) indicates the total number of mutants
of a particular order in all of the data. For example, ‘TS=613’ for single mutants means there were 613 total single mutants in the data set that we sampled
from. Error bars are centered at the mean and indicate bootstrapped 95% confidence interval from 20 random data splits. See Supplementary Fig. 6 for
analogous plot using NDCG.

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology

ArticlesNaTurE BiOTEchnOlOgy

Extended Data Fig. 8 | Edit distance from wild-type sequence as a predictive model (UBE4B U-box domain). Analogous to Fig. 6, but on the UBE4B
U-box domain data set. We compared the performance of non-augmented evolutionary density models to two predictive models that use only the edit
distance of a sequence to the wild type. In one version, the edit distance is defined as the number of mutations away from the wild type. In the other
version, we used BLOSUM62 to compute the distance from wild type, which thus accounts not only for the number of mutations, but also the type of
mutation. Each dot represents a UBE4B U-box domain sequence, with darker colors indicating larger distances from the wild-type.

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology

Articles NaTurE BiOTEchnOlOgy

Extended Data Fig. 9 | FoldX predictions as additional features in augmented models. Each column shows the performance of augmented models with
a single FoldX-derived stability feature added, when training on randomly sampled single mutants and then separately testing on single, double, or triple
mutants. It also shows augmentation of two density models at the same time, without FoldX, as in “Augmented VAE + Potts”. Error bars are centered at
the mean and indicate bootstrapped 95% confidence interval from 20 random data splits. See Supplementary Fig. 7 for analogous evaluation with NDCG.

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology

ArticlesNaTurE BiOTEchnOlOgy

Extended Data Fig. 10 | Performance of linear model using only one feature per site (not per amino acid at each site). In addition to the linear model
with one-hot encoded, site-specific amino acid features, we also evaluated a simpler linear model with position-only features that encode which sites
are mutated. The evaluation uses Spearman correlation. Each column shows the performance when training on randomly sampled single mutants and
then separately testing on single, double, or triple mutants, none of which were in the training data. Error bars are centered at the mean and indicate
bootstrapped 95% confidence interval from 20 random data splits.

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology

	Learning protein fitness models from evolutionary and assay-labeled data

	Results

	Published machine learning methods assessed.
	A simple baseline approach.
	Assay-labeled and evolutionary data sets.
	Experimental overview.
	Performance of existing methods and the augmented Potts model.
	Augmented models as a general, simple and effective strategy.
	Extrapolation from single to higher-order mutants.
	Adding in structure-based information.

	Discussion

	Online content

	Fig. 1 Machine learning methods for protein fitness prediction.
	Fig. 2 Performance of existing methods and the augmented Potts model.
	Fig. 3 Augmented approach using different probability density models.
	Fig. 4 Performance on individual data sets.
	Fig. 5 Extrapolative performance from single mutants to higher-order mutants.
	Fig. 6 Edit distance from wild-type sequence as a predictive model.
	Extended Data Fig. 1 Performance of existing methods and the augmented Potts model with NDCG.
	Extended Data Fig. 2 Performance on individual data sets when trained on limited labeled data.
	Extended Data Fig. 3 Performance on individual data sets when trained on 80% data.
	Extended Data Fig. 4 Augmented approach using different probability density models, with NDCG.
	Extended Data Fig. 5 Performance on individual data sets with NDCG.
	Extended Data Fig. 6 The distribution of best model(s) on each data set.
	Extended Data Fig. 7 Extrapolation performance from single and double mutants to higher-order mutants.
	Extended Data Fig. 8 Edit distance from wild-type sequence as a predictive model (UBE4B U-box domain).
	Extended Data Fig. 9 FoldX predictions as additional features in augmented models.
	Extended Data Fig. 10 Performance of linear model using only one feature per site (not per amino acid at each site).

