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Naturally occurring proteins serve many crucial functions 
in maintaining life, but have also been coopted for human 
endeavors such as gene editing1,2; lighting up specific 

parts of cells3; therapeutic drugs4; and herbicide-resistant crops5. 
Furthermore, in many cases we reengineer proteins to better serve 
our needs. For example, we might enhance the original function, 
such as when we increase enzyme activity6 or make green fluorescent 
proteins (GFPs) brighter7. Alternatively, we might modify the origi-
nal function to a related but different one, such as when we change an 
antibody to bind to a new target8. The two most common approaches 
to protein engineering are laboratory-based directed evolution9 
and computational, physics-based rational design10,11. Machine 
learning-based models that predict protein fitness from sequence 
can allow in silico screening to complement these approaches. Here, 
fitness is a broad term that refers to any protein property ranging 
from stability to enzyme activity and ligand binding. Depending on 
the size of the design space and the computational cost of inference 
of the fitness model, the model can be used either to systematically 
screen all protein variants in the design space12–15, or in combina-
tion with an optimization algorithm to search through vast design 
spaces16–19. When in-depth knowledge of protein structure can be 
coupled to the phenotype of interest, physics-based methods such 
as FoldX20, PoPMuSiC21 and IMutant22 can be used to model protein 
fitness. Applicable more generally, in the absence of such knowledge, 
machine learning models can learn from unlabeled, evolutionarily 
related sequences, or from variant sequences with experimentally 
measured labels, to predict protein fitness. Herein, we focus exclu-
sively on machine learning methods for protein fitness prediction.

There have been two main machine learning-based strategies for 
estimating protein fitness models. The first strategy uses implicit 
fitness constraints present in naturally occurring protein sequences, 
so-called evolutionary data. Such evolutionary methods start from 
one query protein with the desired property (for example, a particu-
lar GFP that fluoresces at some wavelength), and search through 
databases of naturally occurring proteins to find a set of related 
proteins—typically by sequence homology—that are assumed to 
be enriched for the same property as the query sequence. Then, 
a probability density model of this set of protein sequences is  

estimated; finally, sequence density evaluations are used to predict 
the relative fitness of protein variants of interest23,24. Early methods 
for the related problem of pathogenicity prediction, such as SIFT25 
and Polyphen-2 (ref. 26), used position-specific substitution matri-
ces or Hidden Markov models27. In the context of protein fitness 
prediction, Potts models13,23,28–30, which can model pairwise interac-
tions in the sequence, have been shown to outperform SIFT and 
PolyPhen-2 at fitness prediction23. Deep learning models such as 
variational autoencoders (VAEs) can capture higher-order interac-
tions, and may provide more accurate predictions still24. Most evo-
lutionary methods assume that the evolutionarily related proteins 
have been aligned into a multiple sequence alignment (MSA)13,23–30. 
Although the set of evolutionarily related proteins does not typi-
cally have associated measurements for the property of interest, 
the homology search itself is assumed to implicitly provide a weak, 
positive labeling of all proteins in the set. Thus, we refer to these 
evolutionary methods as weak-positive only learning, rather than 
unsupervised learning. The number of sequences used for training 
in such cases can range from hundreds to hundreds of thousands 
when standard procedures are used to curate the set23.

In the second main machine learning strategy for learning pro-
tein fitness models, supervised regression models are trained using 
variant sequences coupled with fitness labels measured in the labora-
tory. Depending on the protein and the property of interest, a super-
vised data set may comprise hundreds to hundreds of thousands of 
examples31,32. The laboratory assay may be a relatively direct mea-
surement of the fitness of interest33, or a crude proxy34. Additionally, 
the set of variant sequences may be restricted to one or two muta-
tions away from a query sequence31,32,34, or be more heterogeneously 
distributed33, with the former setting being more common. The 
labeled variant sequences may vary at only a few sequence positions 
(for example, four positions35), or vary more broadly32. By their lim-
ited construction, these data sets are not typically sufficiently rich 
to comprehensively characterize protein fitness landscapes, but are 
a good starting point. As time progresses, more comprehensive data 
sets, revealing increasingly more nuances of fitness landscapes, will 
expand our understanding. The simplest supervised approach is a 
linear regression model with one-hot encoded site-specific amino 
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acid features; this approach can be extended to include pairwise fea-
tures, and a nonlinear transformation36. Richer supervised models 
used for protein fitness prediction include convolutional neural net-
works (CNNs)15,37, long short-term memory networks (LSTMs)38,39 
and transformers38,40,41. In some cases, such as that of LSTMs and 
transformers, a large and broad set of unlabeled protein sequences 
is also used during training38–42; these data are thought to help find 
effective representations for the supervised learning component. 
Note that some of these classes of models, such as LSTMs and 
transformers, can be used either as probability density models or as 
supervised models.

Recently, several proposals have been made to combine these 
two machine learning strategies: using weak-positive only learning 
on evolutionarily related sequences together with supervised learn-
ing on assay-labeled variant sequences42–44. We refer to this setting 
as weak-positive semi-supervised learning. For many scenarios of 
practical importance, property labels can only be assayed for hun-
dreds of protein sequences. Particularly in such a regime (but not 
limited to this), it is important to combine both sources of data. 
Barrat-Charlaix et al.44 introduce an elegant approach to do so, the 
integrated Potts model, which assumes the Potts model energy 
function is identical to that in a supervised regression model; these 
are then trained jointly. Shamsi et al.43 instead ‘transfer’ information  

from a learned evolutionary model to a supervised version of the 
model by learning a binary masking of parameters. Motivated by 
the field of natural language processing (NLP)45,46, Biswas et al.42 first 
train an unsupervised multiplicative LSTM (mLSTM) on a large 
database of naturally occurring protein sequences, then fine-tune it 
with evolutionary data to produce a fixed-length latent representa-
tion called eUniRep. This fixed representation is then used as the 
features in a regularized linear regression on the assay-labeled data.

Next we report on a systematic assessment of these ‘combined’ 
methods as well as ‘pure’ methods contained in them, such as prob-
ability density-only models, or supervised-only models. We also 
introduce a simple baseline combined approach that turns out to be 
competitive with and often outperform more sophisticated meth-
ods. In one instantiation, our approach achieves maximal perfor-
mance on 15 of the 19 data sets used in our assessment—more than 
any other method—and is typically among the top competitors 
when it does not. Our simple approach can make use of any evo-
lutionary probability density model, and adds little computational 
burden to it.

results
Published machine learning methods assessed. We assessed a 
total of 13 published machine learning methods for protein fitness 
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Fig. 1 | Machine learning methods for protein fitness prediction. a, Overview of methods considered, divided into three machine learning strategies: 
(1) weak-positive only learning methods that rely on probability density modeling of evolutionarily related sequences (profile HMM27, EVmutation23 and 
DeepSequence24); (2) semi-supervised learning methods that rely on unlabeled UniRef50 protein sequences, supervised data and optionally evolutionarily 
related sequences (fine-tuned ESM-1b40 and eUniRep regression42); (3) weak-positive semi-supervised learning methods that rely on evolutionarily 
related sequences and supervised data (the integrated Potts model44, TLmutation43 and augmented models). b, Depiction of the augmented approach to 
predicting fitness wherein evolutionary and assay-labeled data are combined, and it is assumed that the probability density model has already been fully 
trained. In particular, the augmented approach uses linear regression with two kinds of features: first, evolutionary density evaluations (that is, the inferred 
sequence log-likelihoods or approximations thereof from a sequence density model trained on evolutionarily related sequences), and second, one-hot 
encoded site-specific amino acids, to perform supervised training on assay-labeled data.
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prediction that use evolutionary data, assay-labeled data or both. 
Some39,40,42 additionally make use of a large ‘universal’ set of unla-
beled protein sequences, namely the UniRef50 database47. In addi-
tion to the three combined methods summarized earlier (eUniRep 
regression, the integrated Potts model and TLmutation), we also 
included methods that use only one or the other type of data so 
as to glean their relative importance across a range of settings. In 
particular, we included three representative purely evolutionary 
methods: a profile hidden Markov model (HMM)27, a Potts model 
(EVmutation23) and a VAE (DeepSequence24). We also included 
two supervised methods that do not use evolutionary data: a lin-
ear regression model with one-hot encoded site-specific amino 
acid features that uses only assay-labeled data, and the Evolutionary 
Scale Modeling (ESM)-1b transformer40 model that was pre-
trained on UniRef50 (unsupervised), and then fine-tuned with the 
assay-labeled data (supervised). While several transformers have 
been developed and published for protein sequences38,48, we chose 
the ESM-1b model because at the time of our assessment, it was 
shown to have had superior performance on a number of predic-
tion tasks when compared to other transformers40. Figure 1a shows 
a graphical overview of all of these methods.

To enable all of these methods to run on our entire suite of bench-
marking data sets we made minor modifications to some of the 
training procedures so that they could run in a reasonable amount 
of time. For each modification used, we show that the resulting per-
formance closely matches the performance of the original proce-
dure on data sets used in the original papers (Methods).

A simple baseline approach. We developed a simple approach that 
makes use of both evolutionary and assay-labeled data, and that 
turns out to be competitive with much more expensive and com-
plicated approaches. For any already-trained evolutionary prob-
ability density model, we use ridge regression on one-hot encoded 
site-specific amino acid features augmented with one other fea-
ture—the sequence density evaluation (Fig. 1b). We refer to this 

approach as ‘augmenting’ a probability density model. For example, 
when the evolutionary probability density model is a Potts model, 
our baseline yields an augmented Potts model. Beyond augmented 
Potts models, we also compare to augmented VAEs and so forth. 
The augmented Potts model in particular can be interpreted in a 
Bayesian light as updating a prior from the evolutionary data, with 
assay-labeled data (Methods). Because we use only site-specific 
amino acid features in the regression augmentation, the Bayesian 
update is focused on the site-specific parameters (as opposed to the 
pairwise coupling parameters). If we had included also pairwise 
amino acid features, then we would be more directly updating all 
parameters in the Potts model prior, which would yield an approach 
that is conceptually similar to the integrated Potts model44, albeit 
with a different optimization objective. Given an already-trained 
probability density model, the augmentation entails only training 
a linear regression model, thus incurring little computational bur-
den. Although incorporating richer evolutionary density-derived 
features, such as pairwise potentials, into the augmented regres-
sion could yield further improvements, we sought a baseline that 
did not require feature selection or specialized regularization49. We 
did, however, investigate extending our augmented regression fea-
tures to include density evaluations from multiple models, such as 
from both a Potts model and a VAE, or from both a Potts model 
and a Transformer, and so forth. However, doing so resulted in only 
marginal gains on top of the augmented DeepSequence VAE model 
(data not shown). We speculate that this may be because the differ-
ent probability density models were not providing sufficiently inde-
pendent information.

Assay-labeled and evolutionary data sets. We assessed all meth-
ods on 19 labeled mutagenesis data sets, each comprising hun-
dreds to tens of thousands of mutant sequences. Most related 
work24,40,43,44 evaluates on a subset of, or all of the mutation effect 
data sets in EVmutation23. We obtained our 19 data sets by including  
all EVmutation23 protein data sets with at least 100 entries (to have 
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sufficient data to glean insights from), and also included a GFP fluo-
rescence data set33 as in Biswas et al.42 (however, their exact data set 
was not available at the time of our assessment). Other data sets that 
might have been relevant had insufficient evolutionary data in the 
MSAs32,35. In each data set used, mutations were spread across either 
a domain or the whole protein. Although most (16 out of the 19) 
labeled data sets consisted only of sequences that were one muta-
tion away from a fixed wild-type protein (‘single mutants’), we also 
include detailed case studies of the three data sets33,34,50 that contained 
sequences more than one mutation away from a wild-type protein 
(‘higher-order mutants’). Supplementary Table 1 provides a detailed 
overview of these data sets. Each labeled data set was paired with 
an evolutionary data set found by searching through the UniRef100 
database47 for sequences similar to a single, relevant wild-type pro-
tein sequence, using Jackhmmer23,24,42,51. For ease of comparison 
with other papers23,24,43, when available, we directly used MSAs 
curated in this way and provided by EVmutation23. Otherwise, we 
used Jackhmmer with parameters set as in EVmutation.

Experimental overview. For each data set we always used 20% of 
the available labeled data for test sets (which by definition are not 
used to train or perform hyper-parameter selection). Given a fixed 
test set, we systematically varied the supervised training data set size 
by randomly sampling each of 48, 72, ⋯ , 216, 240 training examples 
from the nontest sequences (each training data set size was increased 
in intervals of 24). In addition to these fixed training data set sizes, 
for more direct comparison with TLmutation43 and ESM-1b40, we 
also used all the remaining 80% of the available data not used for 
testing, which we refer to as an 80/20 train/test split. When compu-
tationally feasible, we used fivefold cross-validation on the training 
data set for hyper-parameter selection, and otherwise held out 20% 
of the training data as validation data. For each training data set size, 
including the 80/20 split, we averaged performance over 20 random 
seeds that randomized the data partitions.

We used two measures of predictive model performance: (1) a 
Spearman rank correlation between the true and predicted fitness 
values13,23,24,40,44, and (2) a ranking measure from the information 
retrieval community called normalized discounted cumulative 
gain (NDCG)15,52, which gives high values when the top predicted 
results are enriched for truly high fitness proteins—that is, when 
the model is predicting the ranking of the most fit sequences well. In 
contrast to the Spearman correlation, where errors at the top of the 
true ranked list carry the same weight as mismatches at the bottom, 
NDCG puts a higher weight on ranking the top of the list correctly 
and can be seen as a smoothed version of top k average fitness with-
out a fixed k. No one metric is necessarily the most relevant, as this 
will depend on the task at hand. For example, in using the model 
to propose a list of candidates for protein engineering, we may be 
interested only in the best performance among the top k proteins 
which will be assessed in the laboratory. In contrast, if using the 
model to understand the fitness landscape of a protein, we may be 
interested in more general accuracy. By using both Spearman corre-
lation and NDCG, we hope to be broadly informative across a wide 
variety of settings. For each Spearman correlation result in the main 
text, the corresponding result with NDCG is found in the Extended 
Data and the Supplementary Information. Generally, the two met-
rics yielded similar qualitative conclusions.

Results for TLmutation43 are omitted from the main figures for 
several reasons. First, TLmutation is conceptually similar to our 
augmented Potts model, but is restricted to only allow for zeroing 
out of the evolutionary Potts model parameters by way of super-
vised learning. Second, TLmutation was much more computation-
ally expensive than the augmented Potts model. And finally, in a set 
of exploratory experiments, TLmutation performed worse than our 
augmented Potts model (Supplementary Fig. 3).

Performance of existing methods and the augmented Potts 
model. When comparing existing methods to each other and to our 
augmented Potts model, averaged over all data sets, the augmented 
Potts model typically outperformed existing methods, including 
more sophisticated methods such as eUniRep regression42 (Fig. 2). 
The sole exception was that the purely evolutionarily based VAE out-
performed the augmented Potts model on the double-mutant data 
in the low data regime. However, later we show that the augmented 
VAE outperforms the VAE, suggesting that either the Potts model 
is not sufficiently expressive in some cases, or that the VAE has a 
more suitable inductive bias, or both. As expected, with increasing 
labeled training data, the supervised methods increase in accuracy. 
When breaking down the average performance into individual data 
sets, the augmented Potts model is competitive on most data sets 
(Extended Data Figs. 2 and 3 and Supplementary Figs. 1 and 2). 
The extremely simple, supervised-only, linear regression on one-hot 
encoded amino acid features, is also among the top performers in 
the 80/20 split setting. Due to limited availability of data sets that 
include double mutants, the reported double-mutant performance 
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is averaged over only the three relevant data sets and hence is heav-
ily influenced by their characteristics. We refer the reader to Fig. 5 
for the double-mutant performance breakdown.

Augmented models as a general, simple and effective strategy. 
Next we also augmented the profile HMM, the DeepSequence 
VAE, the eUniRep mLSTM and the ESM-1b transformer, compar-
ing them to each other and to the augmented Potts model. Note 
that the transformer is the only method that does not make use of 
evolutionary data, but was pretrained on UniRef50. Overall, we 
found that the augmented VAE achieved the highest average per-
formance among the augmented models, with the augmented Potts 
model a close second (Fig. 3). No matter which density model we 
augmented, the augmented model always outperformed the corre-
sponding nonaugmented existing method, regardless of the training 
data set size.

Among all approaches evaluated here, and earlier, the augmented 
DeepSequence VAE tended to be the best performer on most data 
sets (Fig. 4b). It worked particularly well relative to others when pre-
dicting enzyme activity, achieving maximal performance in all nine 
of those protein data sets (Fig. 4b). For binding affinity, the different 
augmented models performed comparably (Fig. 4b).

Generally, all models that make use of evolutionary data achieved 
higher Spearman correlation with larger effective MSA size—the 
weighted number of sequences in the MSA after accounting for 
sequence similarity with sample reweighting. Meanwhile, the rela-
tive ranking of models appears to be unrelated to the effective MSA 
size (Fig. 4a). Although each data set had a fixed MSA, we chose the 
data set with the largest effective MSA size (poly(A)-binding pro-
tein) to systematically reduce the size to observe the consequences of 
decreasing size. In this case study, we considered the augmented Potts 
model and linear regression (Supplementary Fig. 4). The augmented  
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by accounting for sequence similarity with sample reweighting at 80% identity cutoff. b, Summary of how often each modeling strategy had maximal 
Spearman correlation. Such modeling strategies were determined by first identifying the top-performing strategy for any given scenario, and then also 
identifying any other strategy that came within the 95% confidence interval of the top performer. See Extended Data Fig. 5 for analogous plots for NDCG 
and Extended Data Fig. 6 for evaluation on varying numbers of training examples.
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Potts model performance degraded gradually when subsampling 
the MSA, while always outperforming linear regression, even with 
only 32 evolutionary sequences. In order to examine the effect of 
MSA size, we held the protein fixed and downsampled the MSA 
sequences. This is of course different than comparing different pro-
teins with different MSA sizes. However, because different proteins 
have different fitness landscapes, there is no way to directly compare 
in such a manner.

Extrapolation from single to higher-order mutants. Because 16 
of the 19 supervised data sets consisted of only single mutants of a 
wild-type, we next more closely examined the three data sets with 
higher-order mutants, namely, the GFP33, Poly(A)-binding protein 
(PABP) RRM domain34 and ubiquitination factor E4B (UBE4B) 
U-box domain50 data sets. Here, we trained the models using only 
single-mutant labeled data, and then evaluated on single, double, 
triple and quadruple mutants separately (Fig. 5 and Supplementary 
Fig. 5). We also tried training on both the single- and double-mutant 
data, and the results were qualitatively similar to using just the 
single-mutant data for training, albeit with the relative difference in 
performance between any two models generally decreasing with more 

data (Extended Data Fig. 7 and Supplementary Fig. 6). The extrapola-
tive performance should depend on how much epistasis contributes 
to the fitness landscape, and also on the ability of a model to capture 
such epistasis. The poor extrapolative performance on UBE4B may 
also stem from its evolutionary data not providing as much relevant 
information to the property of interest (that is, the assayed property).

In data sets where the assay-labeled variants comprise a variety 
of edit distances from the wild-type, we found that simply using the 
edit distance itself is predictive of fitness relative to the machine 
learning models evaluated. For example, for GFP fluorescence, edit 
distance as a predictive model achieves a Spearman correlation of 
0.45 (Fig. 6), presumably because most mutations are deleterious 
and roughly additively so. This result indicates that correlation mea-
sures can be driven by simple features, even if captured by complex 
models. In contrast to GFP, mutation count is not as strongly pre-
dictive for the UBE4B U-box domain data (Extended Data Fig. 8), 
presumably because the mutational effects are more heterogeneous 
in the sense that they comprise more diverse (both deleterious and 
beneficial), or nonadditive effects, or both. Note that despite the 
bimodality of the experimentally measured fitness values, the pre-
dicted fitness values were unimodal from all five methods.
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Adding in structure-based information. The augmentation 
approach can easily incorporate structure-based features or predic-
tions from existing methods as additional regression inputs. Recent 
studies12,15,53–55 have shown that protein structures, Rosetta energy 
terms and molecular dynamics models can provide valuable infor-
mation for fitness prediction. A comprehensive study of how incor-
porating such features may improve fitness prediction herein is 
beyond the scope of the present work. However, to get an initial sense 
of where such future work may lead, we added FoldX-derived stabil-
ity features to our models on the three data sets with higher-order 
mutants (Extended Data Fig. 9 and Supplementary Fig. 7). Adding 
the structure-based FoldX-derived features improved performance 
on GFP relative to the augmented VAE, but such improvements 
were not observed on PABP-RRM or UBE4B. These initial results 
indicate that whether structure-based features provide comple-
mentary information to the evolutionary and assay-labeled data 
may depend on the property of interest and on the quality of  
available structures.

Discussion
We compared machine learning-based methods that make use of 
both evolutionary and assay-labeled data for protein fitness predic-
tion. In addition to comparing published methods, we introduced 
a simple baseline approach, wherein evolutionary density models 
are augmented with supervised data in a linear regression model 
on site-specific amino acid features. We instantiated this approach 
using density models in the form of a profile HMM, a Potts model, 
a VAE, an LSTM and a transformer. Across a wide range of settings, 
the augmented Potts model was competitive with higher capacity 
and more computationally expensive approaches, such as the deep 
learning-based transformer and LSTMs. Even in the relatively larger 
data regimes—which were still small—the extremely simple linear 
regression using site-specific one-hot encoded amino acid features 
performed well.

One may initially be puzzled as to how linear models with only 
site-specific features can generalize at all to mutations not seen at 
train time, let alone surpass nonlinear models in this task. However, 
as detailed in the Methods, such generalization can emerge from 
a particular form of l2-regularized linear regression with one-hot 

encoded features. In effect, through the regularization, the model 
learns about the importance of each position, even though each 
amino acid at each position has its own parameter. Thus, if the 
effects of different mutations at the same position are in the same 
direction, the regularized linear models can do a reasonable job 
of generalizing in such a manner. Although higher-capacity deep 
learning-based approaches can in principle also pick up on this 
predictive power, they may be struggling to do so effectively, pos-
sibly owing to more degrees of freedom combined with a less suit-
able inductive bias. Having said that, deep-learning models are not 
well understood, with even the classical bias-variance tradeoff now 
in question56.

When comparing different augmented models, the augmented 
VAE was most effective at ranking mutational effects overall. Even 
though the augmented ESM-1b transformer does not use evolu-
tionary data (but does use a large, ‘global’ set of proteins for unsu-
pervised pretraining), the augmented ESM-1b transformer was 
competitive with methods that do have access to evolutionary data 
in the regime of relatively large supervised training data sets. Thus, 
an augmented transformer may be a promising choice for proteins 
with limited evolutionary data. More accurate approximations to 
the transformer sequence log-likelihood could improve perfor-
mance further.

Approaches now considered standard in the mainstream 
machine learning community that use supervised data to fine-tune 
deep probability density models, such as transformers and LSTMs, 
were herein outperformed by the augmented transformers and 
LSTMs. These results highlight that state-of-the-art techniques 
from NLP should be carefully considered in the context of protein 
modeling. One substantial difference present in our setting is the 
existence of weak-positively labeled evolutionary data, which has no 
direct analog in traditional NLP data sets.

As larger and more variable (i.e., spanning more of protein space) 
assay-labeled data sets emerge, we expect that increasingly richer 
models will dominate. Moreover, different machine learning strate-
gies are likely needed for smaller and larger labeled data regimes, 
both of which are likely to remain relevant in protein engineering 
into the future. Therefore, when making general methodological 
recommendations, researchers should either consider implications 

0.5

Mutation count

Spearman 0.45 Spearman 0.50 Spearman 0.59 Spearman 0.67 Spearman 0.60

BLOSUM62 Potts VAE eUniRep

0

–0.5

–1.0

F
itn

es
s

P
re

di
ct

io
r

hi
st

og
ra

m

–1.5

–2.0

Mutation count
BLOSUM62

substitution score
Potts model
log likelihood

VAE ELBO eUniRep log likelihood

–2.5

8 6 4 2 0

–6
0

–6
0

–4
0

–4
0

–4
0

–2
0

–2
0

–2
0

–4
00

–3
00

–2
00

–1
00 0

Fitness
histogram 0

1

2

3

4

5

6

7

M
utation count (distance from

 W
T

)

8

9

0 0 0

Fig. 6 | edit distance from wild-type sequence as a predictive model. On the GFP fluorescence data set, we compared the performance of nonaugmented 
evolutionary density models to two predictive models that use only the edit distance of a sequence to the wild-type. In one version, the edit distance is 
defined as the number of mutations away from the wild-type. In the other version, we used BLOSUM62 to compute the distance from wild-type, which 
thus accounts not only for the number of mutations, but also the type of mutation. Each dot represents a GFP sequence, with darker colors indicating larger 
distances from the wild-type. See Extended Data Fig. 8 for the comparison on the UBE4B U-box domain data set.

Nature BioteCHNoLogy | VOL 40 | JULY 2022 | 1114–1122 | www.nature.com/naturebiotechnology1120

http://www.nature.com/naturebiotechnology


ArticlesNaTurE BiOTEchNOlOgy

across the full range of labeled data sizes or restrict recommenda-
tions to the regime tested.

To get an initial sense of how bringing in structure-based pre-
diction might alter our narrative, we compared augmentation 
approaches with and without FoldX-derived stability features on 
three data sets, finding that FoldX features could provide new, use-
ful information. Going forward, it will be beneficial to examine this 
topic more comprehensively, including the use of other tools such 
as Polyphen-2 (ref. 26). PoPMuSiC21, IMutant22 and AlphaFold2 (ref. 
57), for example. As more features go into the augmentation, there 
are likely opportunities to use higher-capacity models for the aug-
mentation model, beyond linear regression. These could be based 
on, for example, regression trees or deep learning.

Although our goal was to assess different methods on real data 
rather than assuming certain simulation settings are representative, 
these real data sets have their limitations and are not necessarily 
representative of the test sets that one might encounter for protein 
engineering. In particular, in a protein engineering setting, one 
would like to understand how the model performs across a larger 
swath of protein space. Most importantly, one would like predic-
tive models to extrapolate as accurately as possible to higher fitness 
areas than that observed in the data58, and to be able to gauge when 
such extrapolations are unreliable17. While it may be possible to 
leverage techniques from covariate shift adaptation to help in this 
regard58,59, such approaches come with their own problems. We thus 
focused on directly evaluating methods without such corrections.

While the Spearman rank correlation has been used in previous 
studies23,24,38,40,43, it does not capture all aspects of predictive perfor-
mance. The Spearman rank correlation reflects a monotonic asso-
ciation between predicted and experimental mutational effects, but 
does not necessarily speak to anything about the mean squared 
error of those predictions, their scale, or any distributional char-
acteristics of the fitness landscape, such as bimodality. However, 
as demonstrated by Wittman et al.15, even modest Spearman cor-
relation can be useful for speeding up iterative directed evolution. 
Our auxiliary use of NDCG, which also reflects distributional 
characteristics of the fitness landscape beyond the rank, provided 
added insight into the robustness of the Spearman rank correlation 
to assess predictive accuracy, as conclusions drawn from NDCG 
were generally concordant with those based on the Spearman rank 
correlation. Ultimately, the specific task at hand will determine the 
suitability of any given metric, and any metric will have its short-
comings for a given task.

While we have focused on evaluating predictive performance, 
in cases where the predictive model is used in conjunction with a 
design strategy15,17–19,58, one should additionally evaluate how design 
and prediction perform in tandem in addition to independently.
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Methods
Evolutionary sequences. We use the MSAs provided by EVmutation23 whenever 
possible. For the GFP, the only exception, we follow the same procedure as 
EVmutation to gather sequences using the profile HMM homology search tool 
Jackhmmer51. We determine the bit score threshold in Jackhmmer search with the 
same criterion from EVmutation. In particular, for GFP, we started with 0.5 bits per 
residue and subsequently lowered the threshold to 0.1 bits per residue to meet the 
sequence number requirement (redundancy-reduced number of sequences ≥10L, 
where L is the length of the aligned region). For sensitivity analysis, when using  
the bit score to 0.5 bits per residue or increasing the number of iterations to 10,  
the resulting MSAs on GFP still lead to similar downstream model performance 
(data not shown).

Mutation effect data sets. Hopf et al.23 identified a list of mutation effect data sets 
generated by mutagenesis experiments of entire proteins, protein domains and 
RNA molecules. We exclude the data sets for RNA molecules and influenza virus 
sequences, as well as excluding data sets that contain fewer than 100 entries, to 
have meaningful train/test splits with at least 20 examples in test data. This leaves 
us with 18 data sets from EVmutation.

Following the convention in EVmutation and DeepSequence, we exclude 
sequences with mutations at positions that have more than 30% gaps in MSAs 
to focus on regions with sufficient evolutionary data. On most data sets, this 
excludes less than 10% of the data, although for a few proteins such as GFP this 
affects as much as half of the positions. For example, on GFP, out of 237 positions, 
only positions 15–150 pass the criterion of less than 30% gaps in the MSA. 
Coincidentally, the selected position 15–150 region covers the 81 amino region 
studied by Biswas et al.42.

Among those 18 EVmutation data sets, only two on the poly(A)-binding 
protein activity34 and the UBE4B auto-ubiquitination activity50 include 
higher-order mutants (even though EVmutation Supplemental Table 1 indicates 
that the YAP1 WW domain 1 peptide binding data set also include higher-order 
mutants, the supplemental data for YAP1 only contain single-mutant sequences 
and no higher-order mutant data are available in the original publication31 either.) 
While EVmutation only evaluates performance on the single mutants from the 
UBE4B U-box domain data50, we also include higher-order mutants in evaluation. 
Additionally, we also include a GFP fluorescence data set33, since GFP is a core 
example used by Biswas et al.42. The GFP data also include higher-order mutants. 
This results in 19 data sets total as listed in Supplementary Table 1.

Amino acid encodings. In addition to an overparameterized one-hot amino acid 
encoding (one binary feature for each amino acid possibility per position), we also 
experiment with the 19-dimensional physicochemical representation of the amino 
acid space developed by Georgiev60, also used by Wittman et al.15. The features in 
Georgiev representation are principal components of over 500 amino acid indices 
from the AAIndex database61. As shown in Supplementary Fig. 8, the Georgiev 
encoding achieves better performance than the one-hot amino acid encoding on 
data sets with higher-order mutants when presented with sufficient training data 
(bottom right), agreeing with previous findings15. However, on single-mutant only 
data sets or on limited training examples, the Georgiev encoding leads to almost 
identical performance to the one-hot encoding. For the augmented Potts model, 
the Georgiev encoding also does not improve performance compared to the 
one-hot encoding in any setting.

Since the other evaluated methods, such as EVmutation23, DeepSequence24 and 
UniRep39, all use the one-hot amino acid encoding as inputs to their models, we 
omit the Georgiev encoding results in the main text for fair comparison.

Linear model with one-hot encoded amino acid features. For a sequence 
s = (s1, ⋯ , sL) of length L, with elements si ∈ A = { all amino acids }, the linear 
model with one-hot encoded amino acid features maps the sequence to a scalar 
regression output by

f(s;θ) = θ0 +
L∑

i=1

∑

a∈A

a(si)θi(a) = θ0 +
L∑

i=1
θi(si), (1)

where θ0 ∈ R is the bias term (which we deem not to be part of the encoding), 
a(si) is an indicator function equal to 1 when a = si and to 0 otherwise, and 

each θi ∈ R
|A| is an |A|-dimensional vector. Together, we refer to all of these 

parameters as θ. Each coefficient, θi(a) ∈ R, corresponds to the effect of a amino 
acid a at position i, and we use θi(si) to denote the coefficient corresponding to the 
particular amino acid si.

This linear model is overparameterized by virtue of the one-hot encoding. 
In particular, there are |A| × L + 1 parameters for at most (|A| − 1) × L + 1 
degrees of freedom. Additionally, if not all amino acids are observed at all 
positions in the training data, then the model will be correspondingly more 
overparameterized. As a consequence of this overparameterization, further 
constraints are needed to identify a unique solution. While there are different 
approaches for adding constraints, we chose to use ℓ2-regularized regression (also 
known as ridge regression). We used fivefold cross-validation to determine the 
setting of the regularization parameter (λ below).

We deliberately chose to use this overparameterized approach over an approach 
with |A| − 1 nonredundant features, for reasons that will be explained shortly. 
Without regularization, this choice would be of no consequence. However, with 
regularization, the choice becomes consequential—both for the linear model with 
redundant one-hot encodings, and also for our augmented models that have a 
similar component. The main consequence of this choice is in how the trained 
model will make predictions on test sequences containing amino acids at positions 
that were not observed in the training data. Next we explain this in more detail.

Effects of ℓ2 regularization on generalization. Minimizing the ℓ2-regularized 
loss arising from the linear regression model in equation (1) is equivalent to 
minimizing the following objective function,

g(θ) :=

N∑

n=1
(y(n) − f(s(n);θ))2 + λ

L∑

i=1

∑

a∈A

θi(a)2, (2)

where the scalar λ is the regularization hyper-parameter that dictates the strength 
of the regularization and (s(n), y(n)) are the sequence-fitness pairs observed in the 
training data.

Generally, we think of ℓ2-regularized linear regression as tantamount to putting 
a spherical Gaussian prior on the regression parameters and obtaining a point 
estimate of the parameters, if one is a Bayesian. Alternatively, one may view it as 
a shrinkage penalty that pushes the weights toward zero. However, in the specific 
context herein—of an overparameterized model with one-hot encoded features—
the ℓ2 regularization has some further interesting properties that are not widely 
known. First, the use of any positive value for λ in the ℓ2 regularization in this 
context implies that at any given position, i, the optimal parameters, θ̂i(a) (that is, 
those that minimize equation (2)), at that position, sum up to zero. We refer to this 
as the zero-sum condition, which we now more formally define and prove, before 
discussing its consequences in more detail.

Lemma 1. For the zero-sum condition, let θ̂ be the optimal parameters that 
minimize the ℓ2-regularized linear regression objective (equation (2)) on a linear 
model with one-hot encoded amino acid features (equation (1)). For any position i, 
the coefficients over all the amino acids always sum to zero. That is,

∑

a∈A

θ̂i(a) = 0.

Proof. By first-order optimality conditions, at a solution to equation (2), all of the 
partial derivatives of the ℓ2-regularized objective (equation (2)) must all be equal 
to zero, namely,

∂g(θ)
∂θ0

=

∂
N∑

n=1
(y(n) − f(s(n);θ))2

∂θ0

∣∣∣∣∣∣∣∣∣
θ=θ̂

= 0, and (3)

∂g(θ)
∂θi(a) =

∂
N∑

n=1
(y(n)−f(s(n) ;θ))2

∂θi(a)

∣∣∣∣∣∣
θ=θ̂

+ 2λθ̂i(a) = 0 for all

i = 1, …, L and all a ∈ A.

(4)

Furthermore, the sum of the indicator functions appearing in equation (1), for 
position i, over all amino acids, is always equal to one,

∑

a∈A

a(si) = 1, (5)

from which we see that

∑

a∈A

∂f(s;θ)
∂θi(a)

=
∑

a∈A

∂(θ0 +
L∑

i=1
θi(si))

∂θi(a)
=

∑

a∈A

a(si) = 1. (6)

It also straightforwardly holds that the partial derivative of the model with respect 
to the bias is always equal to one, and therefore by the previous result is also equal 
to the sum of partial derivatives,

∂f(s;θ)
∂θ0

=
∂(θ0 +

∑L
i=1 θi(si))

∂θ0
= 1 =

∑

a∈A

∂f(s;θ)
∂θi(a)

. (7)

It therefore follows by two applications of the chain rule that for any value of θ,

∂
∑N

n=1 (y
(n)

− f(s(n);θ))2

∂θ0
= −2

N∑

n=1
(y(n) − f(s(n);θ0))

∂f(s(n);θ)
∂θ0

(8)
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= −2
N∑

n=1
(y(n) − f(s(n);θ))

∑

a∈A

∂f(s(n);θ)
∂θi(a)

(9)

=
∑

a∈A

−2
N∑

n=1
(y(n) − f(s(n);θ)) ∂f(s

(n);θ)
∂θi(a)

(10)

=
∑

a∈A

∂
∑N

n=1 (y
(n)

− f(s(n);θ))2

∂θi(a)
. (11)

Now, more specifically at the optimal θ̂ that minimizes the objective, combining 
equation (3) with equation (11), we have

∑

a∈A

∂
N∑

n=1
(y(n) − f(s(n);θ))2

∂θi(a)

∣∣∣∣∣∣∣∣∣
θ=θ̂

=

∂
N∑

n=1
(y(n) − f(s(n);θ))2

∂θ0

∣∣∣∣∣∣∣∣∣
θ=θ̂

= 0, (12)

which when combined with equation (4), shows that

2λ
∑

a∈A

θ̂i(a) = 0. (13)

Therefore, so long as λ > 0, the ℓ2-regularized solution must satisfy the zero-sum 
condition stated above, ∑

a∈A

θ̂i(a) = 0.

Generalization to mutations not seen at train time. If amino acid, α, at position i 
was not seen in the training data, then ridge regression sets θ̂i(α) = 0, so as to 
minimize the ℓ2 penalty (Lemma 2, below). While we use a to generally denote 
amino acids, we use α to specifically refer to amino acids that are not seen at 
position i in the training data. A consequence of this property, jointly with the 
zero-sum condition, is that the effect, θ̂i(α), of mutation α at position i on the 
predicted fitness, is precisely equal to the average effect of all amino acids seen at 
train time at that position, namely, θ̂i(α) = 1

|Atrain
i |

∑
a∈Atrain

i
θ̂i(a) (Proof below), 

where Atrain
i  denotes the set of all amino acids (including the wild-type) seen at 

position i in the training data.
Consequently, the model will generalize to unseen amino acids at a given 

position in a manner that ‘understands’ how mutable a site is, where mutability 
is the ability of the site to tolerate mutations while maintaining fitness. That is, 
if a given site tends to yield poor fitness when mutated, then its average training 
data effect will tend to be poor and the extrapolated fitness at test time to a new 
amino acid will be predicted to be poor. To explain how much that information 
(mutability at a site) might perform on its own, we also tried a predictive model 
consisting of nothing but the position of the mutation (0/1) in a linear regression 
model (Extended Data Fig. 10 and Supplementary Figs. 9–11). We found that this 
model is very predictive given that it is unaware of the specifics of any particular 
amino acids. In particular, it performs close to, but slightly worse than the linear 
model with one-hot encoded amino acid features. Notably, use of a nonredundant 
encoding in the same ℓ2 modeling framework would not enable such predictions 
based on mutability to be made. In particular, in using one parameter per possible 
mutation from wild-type at each position, the model would predict zero effect for 
mutations not seen at train time.

The mechanism for the site-specific generalization described above is similarly 
present in the augmented models because of their ℓ2-regularized linear regression 
with one-hot encoded features, which retain an analog to these properties even 
when augmented with a density feature. Note that one might consider altering the 
regularization to a more nuanced version wherein the emergent average amino 
acid prediction at a site is weighted in a manner to account for chemical similarity 
of amino acids, their frequency in the training data and so forth.

Lemma 2. For the site-specific generalization effect, let Atrain
i  denote the set of 

all amino acids (including the wild-type (WT)) seen at position i in the training 
data Dtrain. Let α /∈ A

train
i  be an amino acid at position i that was not seen in the 

training data. For the optimal parameters θ̂ that minimize the ridge regression 
objective, we must have θ̂i(α) = 0. Furthermore, θ̂i(α) is the average effect of all 
seen amino acids at that position in the sense that

θ̂i(α) =
1

|Atrain
i |

∑
a∈Atrain

i

θ̂i(a)

and

θ̂i(α) − θi(aWT) =
1

|A
train
i |

∑
a∈Atrain

i

(θ̂i(a) − θi(aWT))

.

Proof. For an amino acid α that was not seen at position i in the training data, since 
s(n)i ̸= α for any sequence s(n) in the training data, the first term in the objective 
function (equation (2)) does not depend on θi(α). From the first-order optimality 
condition we therefore have

∂g(θ)
∂θi(α)

∣∣∣∣
θ=θ̂

= 2λθ̂i(α) = 0 ⇒ θ̂i(α) = 0.

From the zero-sum condition,
∑

a∈Atrain
i

θ̂i(a) +
∑

a /∈Atrain
i

θ̂i(a) = 0. (14)

Since θ̂i(a) = 0 for a /∈ A
train
i , we are then left with

∑

a∈Atrain
i

θ̂i(a) = 0. (15)

Therefore, for any α /∈ A
train
i

θ̂i(α) = 0 =
1

|Atrain
i |

∑

a∈Atrain
i

θ̂i(a). (16)

If we prefer to consider instead the mutational effect relative to wild-type, then we 
can obtain an analogous result simply by subtracting θi(aWT) from both sides of the 
above equation (where aWT denotes the wild-type amino acid), to get

θ̂i(α) − θi(aWT) =
1

|A
train
i |

∑

a∈Atrain
i

(θ̂i(a) − θi(aWT)), (17)

indicating that the results are true both for absolute and relative effects.

EVmutation Potts model. Briefly, EVmutation learns a sequence distribution 
under site-specific constraints and pairwise constraints for each protein family. 
Under a Potts model (also sometimes known as a generalized Ising model) with 
alphabet A, the probability of a sequence s = (s1, · · · , sL) ∈ A

L of length L is 
given by a Boltzmann distribution:

P(s) =
1
Z

exp{−H(s)}, H(s) = −

L∑

i<j
Jij(si, sj) −

L∑

i
hi(si)

where Z is a normalization constant, hi ∈ R
|A| are site-specific amino 

acid-specific parameters, Jij ∈ R
|A|×|A| are pair-specific amino acid-specific 

parameters and si ∈ A indicates the amino acid at position i. The h and J 
parameters are estimated by regularized maximum pseudo-likelihood. See ref. 23 
for the full modeling fitting details of sequence reweighting, pseudo-likelihood 
approximation, regularization and optimization. We use the same plmc package 
(May 2018) as EVmutation to fit Potts models with default parameters.

Under the assumption that learned sequence probabilities are correlated with 
sequence fitness, EVmutation predicts the mutation effect of a mutant according 
to the log-odds ratios of sequence probabilities between the wild-type and 
mutant sequences, which is equivalent to the log-likelihood of the mutant up to 
a constant.

Profile HMMs. Profile HMMs62 are probabilistic models that capture 
position-specific information about the amino acid distribution at each site, 
assuming that the amino acid at a particular position is independent of the amino 
acid at all other positions. Compared to Potts models, profile HMMs do not 
contain pairwise interactions and are also referred to as the independent model 
or the independent site model. We evaluated the HMMER suite profile HMM 
implementation51 and the EVmutation independent model implementation23 
on the same evolutionary sequences. There is a minor performance difference 
(Supplementary Fig. 12) between the two implementations due to algorithmic 
differences, and the ‘profile HMM’ and ‘augmented HMM’ methods in this paper 
are based on the HMMER version.

DeepSequence VAE. Similar to EVmutation, DeepSequence24 also models a 
sequence distribution for each protein family and predicts mutation effects 
according to approximations of log-odds ratios of sequence probabilities between 
the wild-type and mutant sequences. Here, the sequence distribution is modeled 
by a nonlinear VAE model with a multivariate Gaussian latent variable z. A neural 
network parameterizes the conditional distribution P(s∣z, θ), and the sequence 
likelihood P(s∣θ) is then

P(s|θ) =

∫
P(s|z, θ)P(z)dz. (18)

While the exact log-likelihoods are intractable, they are lower-bounded by the 
evidence lower bound (ELBO)
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L(ϕ;s) = Eq[log p(s|z, θ)] − DKL(q(z|s,ϕ)||p(z)),

where q(z∣s, ϕ) is a variational approximation for the posterior distribution p(z∣s, θ) 
that is also modeled by a neural network. As an approximation to log-likelihoods, 
the ELBO can also be used to predict mutation effects. Whenever possible, we use 
the available ensemble predictions from DeepSequence24. For the GFP, the UBE4B 
U-box domain and the BRCA1 ring domain, we followed the DeepSequence 
code in Theano and parameters to train an ensemble of VAE models (five models 
with different random seeds). When computing the evidence-based lower bound 
(ELBO) as sequence log-likelihood estimations, we follow DeepSequence to take 
the average of 2,000 ELBO samples (400 samples from each of the five VAE models 
in the ensemble).

eUniRep mLSTM. The UniRep39 mLSTM can also be viewed as a sequence 
distribution. Given the first i amino acids of a sequence, a neural network 
parameterizes the conditional probabilities of the next amino acid P(si+1∣s1 ⋯ si). 
From the conditional probabilities we can also reconstruct the sequence probability 
as

P(s) = ΠL
i=1P(si|s1 · · · si−1).

For convenience, artificial start and stop tokens are added at the two ends of 
sequences. Under this probabilistic interpretation, the unsupervised pretraining 
on UniRef50 sequences with next-step predictions is equivalent to finding model 
parameters that maximize likelihood on UniRef50 sequences. We omit the 
performance of the pretrained (not evo-tuned) UniRep model in our results since 
generally it is largely outperformed by the eUniRep described below.

To adapt the UniRep model to specific protein families, Biswas et al.42 propose 
the ‘evo-tuning’ procedure, which fine-tunes the UniRep model by minimizing 
the same next-step prediction loss on evolutionary sequences in addition to on 
UniRef50 sequences. Following the naming convention42, We refer to the model 
after ‘evo-tuning’ as eUniRep. After fine-tuning, Biswas et al.42 then perform 
supervised regression with the 1,900-dimensional average embeddings (averaged 
over sequence length axis) from the final hidden layer in the eUniRep model as 
regression features.

While the original fine-tuning procedure for eUniRep42 optimizes for next-step 
prediction loss on entire evolutionary sequences up to length 500 (discarding 
longer sequences), we find that next-step prediction on aligned portions of 
evolutionary sequences (with gaps included as gap tokens) works as well on GFP 
and beta-lactamase (Supplementary Fig. 13), and therefore fine-tune on only 
aligned portions to lower computational costs as the mLSTM memory usage scales 
quadratically with respect to sequence length. We used the open-source UniRep 
code in tensorflow.

For each protein family, we randomly split the evolutionary sequences from the 
MSA into an 80% training set and a 20% validation set to check for over-fitting. 
When training for 10,000 gradient steps with the same learning rate 1 × 10−5 as 
Biswas et al.42, the validation loss eventually plateaus but does not increase. Since 
the validation loss typically plateaus before 10,000 steps, we chose to stop training 
at 10,000 steps.

ESM-1b transformer. The ESM-1b transformer40 is pretrained on UniRef50 
representative sequences with the masked language modeling objective, where a 
fraction (15%) of amino acids in each input sequence are masked and the model 
is trained to predict the missing tokens. We chose the ESM-1b model to represent 
transformers as it has the best performance on downstream secondary structure 
prediction and contact prediction tasks40 among transformers from previous 
studies38,48 and other transformer architectures tested. While the original mutation 
effect prediction results40 were based on the older 34-layer ESM-1 model, we found 
that ESM-1b slightly improves performance over the ESM-1 model (data not 
shown).

When using transformer models for sequence-fitness predictions, Rives et al.40 
mask the mutated positions and used the difference in conditional log-likelihoods 
(conditioned on nonmutated amino acids) between the mutated amino acids and 
the wild-type amino acids as fitness prediction. We explain below that this could be 
viewed as an approximation for pseudo-log-likelihoods (PLLs).

Masked token language models can also be viewed as sequence distributions, 
where the sequence distribution is implicitly represented by conditional likelihoods 
P(si∣s−i), where s−i indicates all other sequence positions excluding position i, that is, 
s−i = s1 ⋯ si−1si+1 ⋯ sL.

Since exact likelihoods are too computationally expensive for Transformers, 
we resort to pseudo-likelihoods. In general, given a sequence s of length L, its 
pseudo-likelihood63 is defined as the product of conditional likelihoods for each 
site. Hence, the pseudo-log-likelihood of a sequence s is

PLL(s) =

L∑

i=1
log P(si|s−i).

However, even the evaluation of PLLs is computationally expensive, since it 
requires L inferences for a sequence of length L. As a more computationally 

efficient approximation, we only compute conditional likelihoods on the mutated 
positions, and then use the difference between the conditional log-likelihoods 
of the mutated sequence and the wild-type sequence as an approximation for 
PLLs. More specifically, for a mutant sequence ϕ and wild-type sequence σ, we 
approximate the PLL difference by the following, as equivalent to the existing 
formula used by Rives et al.40:

PLL(ϕ) − PLL(σ) =
ℓ∑

i=1
log P (ϕi|ϕ−i) −

ℓ∑
i=1

log P (σi|σ−i)

=
∑

i:ϕi ̸=σ i

(log P (ϕi|ϕ−i) − log P (σi|σ−i))

+
∑

i:ϕi=σ i

(log P (σi|ϕ−i) − log P (σi|σ−i))

︸ ︷︷ ︸
≈0

The underlying assumption here is that the conditional log-likelihoods of 
wild-type amino acids on mutant backgrounds are roughly the same as on 
wild-type backgrounds. While this might be accurate for mutant sequences that 
are close enough to wild-type sequences, in general there is no support for this 
approximation on high-order mutant sequences and the full PLLs will likely be 
more accurate for mutation effect predictions.

For supervised learning, we evaluated two approaches with the same 
Transformer model. The first one (‘fine-tuned transformer’) is to fine-tune the 
entire Transformer model with fitness labels as done by Rives et al.40, using the 
PLL difference between the mutant and the wild-type as a predictor for fitness. We 
perform 20 epochs of supervised fine-tuning with learning rate 3 × 10−5 and with 
early stopping according to validation Spearman correlation, using the open-source 
ESM code in PyTorch. For a given training data size, we keep 20% of the data 
for validation (early stopping) and use the remaining 80% for fine-tuning. Using 
Spearman correlation as opposed to validation loss for early stopping is crucial for 
performance, especially on small data sizes. Although the implementation details 
might not exactly match those from Rives et al. (since the fine-tuning code is not 
available), we show that our method is able to reproduce the same results on most 
of the Envision data sets used by Rives et al., as shown in Supplementary Fig. 14.

In the second approach (‘augmented transformer’), while keeping the 
transformer model constant, we concatenate the PLL difference inferred from the 
pretrained (not fine-tuned) model together with one-hot amino acid encoding as 
features for regression.

We also attempted unsupervised fine-tuning (‘evo-tuning’) of the ESM-1b 
transformer model on evolutionarily related sequences from MSAs, although our 
preliminary efforts on β-lactamase and PABP-RRM do not result in improved 
performance (data not shown).

Integrated (tied-energy) Potts model. The integrative approach44 for Potts models 
optimizes the joint log-likelihood for model parameters on both evolutionary data 
and labeled data. Given evolutionary sequences σ1, ⋯ , σM, the log-likelihood on 
evolutionary data is

log P(σ1, · · · , σM
|J, h) = −

M∑

k=1
H(σk

) − MlogZ ,

where

H(σ) = −

L∑

i<j
Jij(σi , σj) −

L∑

i
hi(σi).

On the other hand, given sequence-fitness pairs (s1, y1), ⋯ , (sN, yN), assuming 
independent and identically distributed Gaussian noise drawn from N (0,Δ2), the 
log-likelihood on labeled data is

log P(s1, · · · , sM, y1, · · · , yM|J, h) = −
1

2Δ2

N∑

k=1
[yk − H(sk)]2 − N

2 log (2πΔ2
).

The integrated Potts model is learned by maximizing the joint log-likelihood 
log P(σ1, · · · , σM|J, h) + log P(s1, · · · , sM, y1, · · · , yM|J, h) with ℓ2-regularization.

The noise variance Δ2 determines the relative weighting between the two 
losses in the joint log-likelihood. Using existing notation44, the relative weighting 
parameter is

λ =
1

1 + Δ2 .

In practice, since we do not know the noise variance, we use 20% of the training 
data for validation and choose the best λ according to Spearman correlation on 
validation set. Another practical complication is that we only have fitness labels 
that are up to some monotonic transformation from the energies. Following 
Figliuzzi et al.30, we use a monotonic mapping between sorted energy values and 
sorted fitness labels.
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Following recommendations from the authors, the Potts model parameters are 
initialized with parameters estimated by pseudo-likelihood. Before introducing 
labeled data, we first give the model a warm start by training 500 iterations only 
on evolutionary data. Then, we optimize the regularized joint log-likelihood for 
100 iterations for each λ value. The only exception is for β-glucosidase, where 
the protein sequences are too long (>500 amino acids) and lead to very high 
memory consumption and long run-time (>2 days) for the integrated Potts model. 
Therefore, for β-glucosidase alone we use the Potts model performance without 
labeled data as a substitute for the integrated model performance.

We follow the publicly available code (https://github.com/PierreBarrat/
DCATools/tree/master/src) with slight modifications to use zero-sum gauge 
instead of wild-type gauge for Potts models. In Potts models for categorical 
variables, there are more free parameters than independent constraints, and gauge 
fixing refers to reducing the number of independent parameters to match the 
number of independent constraints64. The wild-type gauge forces all parameters 
corresponding to wild-type amino acids to be zero, while the zero-sum gauge 
requires 

∑
ω∈A

hi(ω) = 0 and 
∑

ω∈A
Jij(ω, α) =

∑
ω∈A

Jij(α, ω) = 0. When 
there is regularization involved, different gauge fixings lead to nonequivalent 
models. Although gradient calculations are easier in the wild-type gauge, we found 
that the zero-sum gauge led to better predictive performance (Supplementary  
Fig. 15) and hence adopted the zero-sum gauge.

Alternative tied-energy models. In addition to integrated Potts models, we 
also evaluate alternative ways to train a density model of a protein family and a 
predictive model of fitness in an integrated fashion (Supplementary Fig. 16). Rather 
than using a fixed and possibly incorrect monotonic mapping between sorted 
energy values and sorted fitness labels30, we consider a differentiable proxy of the 
Spearman correlation65 between the predicted and true fitness values. Specifically, 
given N sequence-fitness pairs, (s1, y1), ⋯ , (sN, yN), let (s1, r(y1)), ⋯ , (sN, r(yN)) denote 
the corresponding sequence-ranking pairs, where r(yk) ∈ {1, …, N} gives the rank in 
descending order of the value yk among the values {y1, …, yN}. We fit a Potts model 
by optimizing the joint loss

1
M

log P(σ1, · · · , σM
|J, h) + λ

1
N

N∑

k=1
[r(yk) − r̂(H(sk))]2

with ℓ2-regularization, where ̂r(H(sk)) is a differentiable proxy65 of the rank 
r(H(sk)). For tractability, we optimize the pseudo-likelihood approximation 
of the log-likelihood term in the joint loss. We choose the value of 
λ ∈ {0.0001, 0.001, 0.01, 0.1, 0.9} with fivefold cross-validation.

To explore the effect of training energy-based models other than the Potts 
model in this fashion, we use the same procedure to fit an energy-based model 
with an energy function parameterized by a two-layer feed-forward neural 
network with hidden layer sizes of (300, 100) and rectified linear activation 
function activations. As with the Potts model, we optimize the pseudo-likelihood 
approximation of the log-likelihood term in the joint loss.

BLOSUM62 substitution scores. For a mutant sequence, we sum the BLOSUM62 
substitution scores between every amino acid in the wild-type sequence and the 
mutant sequence. The scores are then offset by the a constant such that a score of 
zero is obtained for the wild-type sequence.

Augmented models. For augmentation, we rely on an already-trained probability 
density model on a set of evolutionarily related sequences, that does not get altered. 
To augment this existing density model, we concatenate the sequence density 
estimation from the original model together with one-hot encoded site-specific 
amino acid features, as illustrated in Fig. 1b. Mathematically, following the same 
notation for linear models with one-hot encoded features, given a density model 
with sequence probability distribution p(s; φ) and fixed density model parameters 
φ, the corresponding augmented model is

f(s;φ, θ, β) = βlog P(s;φ) + θ0 +
L∑

i=1
θi(si),

where the parameters θi ∈ R
|A|, θ0 ∈ R and β ∈ R are learned from 

assay-labeled data. When performing ridge regression with this augmented 
model, the regularization strength for β was set to make this feature practically 
unregularized (regularization strength, 10−8), while the other parameters, θ, 
were regularized using a common strength determined by cross-validation. For 
density models where computing exact log-likelihoods is challenging, we use 
one of various approximations. For Potts models and transformers, we use the 
pseudo-log-likelihood, and for VAEs, the ELBO. Similar to the setup of a linear 
model with one-hot encoded site-specific amino acid features, we again used the 
overparameterized one-hot site-specific amino acid encoding with |A| features 
per position (one binary feature for each amino acid possibility per position) in 
combination with ℓ2 regularization. See the section on Effects of ℓ2 regularization 
on generalization above for more details on how this choice influences model 
prediction on mutations not seen in the training data.

The augmented Potts model as an evolutionary prior for linear regression. 
One can view the augmented Potts model as a tailoring of the implicit prior in 
the ℓ2-regularized (ridge) linear regression with site-specific amino acid features, 
where the tailoring is based on evolutionary information from the density model. 
First, note that in the Bayesian, maximum a posteriori (MAP) interpretation of 
ridge regression, a zero-mean Gaussian prior probability has been given to the 
ridge regression parameters, θi(α) ≈ N (0, τ2). Now consider the augmented 
Potts model, with already-fitted Potts model, p(s; φ ≡ {hi, Jij}), with site-specific 
parameters, {hi(α)} at position i for amino acid α and analogous coupling 
parameters, {Jij(α1, α2)}. If in the augmented Potts model, the Potts model density 
feature was independent from the site-specific amino acid features, one could in 
a two-step procedure first fit the density-associated parameter, β = β̂ ∈ R, and 
having fit that, then fit the remaining parameter vector, θ. Under the independence 
assumption, the resulting parameter estimates from the two-step procedure would 
be identical to having estimated them jointly as in regular ridge regression (with no 
regularization on the density feature, as done for the augmented Potts model). In 
such a two-step fitting procedure, the second step would correspond to performing 
ridge regression on the residuals y′ = y − β̂log p(s;φ). Correspondingly, 
the implicit prior of ridge regression gets tailored by shifting its mean by an 
amount, β̂h̃i(α), corresponding to the Potts model site-specific parameters, to 
back-interpret the prior over the parameters to be θi(α) ≈ N (β̂h̃i(α), τ2). Note 
that the effect of the coupling parameters in the Potts model is entirely mediated 
through the estimate of β̂. Also note that the assumption of independence of the 
Potts model density feature from the other features is unlikely to be true in most 
practical cases; however, this does not necessarily detract from the overall intuitive 
interpretation.

Model evaluation. For each data set, we randomly sample 20% of the data set 
as held-out test data. Among the remaining 80% data, we randomly sample 
N = 24, 48, 72, 96, ⋯ , or 240 single-mutant sequences as training data in separate 
experiments, or use all single-mutant sequences in the 80% training data in the 
80/20 split experiments. When computationally feasible (for the linear model, 
eUniRep regression, and all augmented models), we use fivefold cross-validation 
to determine hyperparameters. Otherwise, for the fine-tuned transformer and 
the integrated Potts model, we set aside 20% of the training data to determine 
hyperparameters (that is, the number of fine-tuning epochs for the transformer 
and the relative weighting between evolutionary and assay-labeled data for 
the integrated Potts model). For each fixed sample size, the model evaluation 
procedure is repeated 20 times with different random seeds for uncertainty 
estimation. The only exception is for the integrated Potts model, where we only use 
five random seeds due to the long computation time. The 95% confidence intervals 
of the means are estimated via bootstrapping.

NDCG. DCG and its normalized version, NDCG, are both widely used measures 
of ranking quality in information retrieval. NDCG has also recently been used in 
the protein engineering community to assess fitness prediction15. The NDCG score 
can be seen as a smoothed version of the mean fitness of the top k predictions, 
without having to fix an arbitrary k. In the top k mean metric, the true fitness 
values of variants are summed with a binary weight of either 1/k or 0 depending 
on whether the variant is in the top k or not. Instead of the binary weight, NDCG 
sums over the variants with a smoothed logarithmic weight.

Given a model’s prediction on M protein variants, to calculate DCG we first 
sort all variants by predicted scores into an ordered rank list ŷ1 ≥ ŷ2 ≥ · · · ≥ ŷM. 
Then, DCG sums the true fitness values y with a logarithmic discount according to 
the rank order, where a variant’s true fitness value contributes more to the sum if it 
is more highly ranked,

DCG =

M∑

i=1

yi
log(i + 1) .

The best (highest) possible DCG on a set of M protein variants occurs when 
all protein variants are predicted to be in the exact same rank order as the true 
fitness. On different data sets, the value of the best possible DCG is different, 
depending on the true fitness values in the data set. Consequently, the DCG is 
often normalized to make the values more comparable between data sets. To do so, 
we first standardize the true scores y to have zero mean and unit variance. Then, 
we normalize the DCG by dividing by the best possible DCG (that is, obtained for 
a perfect ranking) to obtain the NDCG, which therefore lies between 0 and 1 for 
all data sets.

As an example, consider three protein variants A, B and C with the respective 
true fitness values, −0.8, 0.6 and 0.2, and predicted fitness values, 0.1, 0.9 and −0.1. 
First we sort them in predicted order B > A > C. Then the DCG from the predicted 
model is 0.6/log (2) + (−0.8)/log (3) + 0.2/log (4) = 0.195, while the ideal DCG 
from the perfect ranking is 0.6/log (2) + 0.2/log (3) + (−0.8)/log (4) = 0.326. 
The ratio between the DCG and the ideal DCG, 0.195/0.326 = 0.598, is then the 
NDCG.

Mann–Whitney U-test. We use the two-sided nonparametric Mann–Whitney 
U-test for comparing average performance between different methods. The null 
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hypothesis of the U-test is that, for randomly selected values X and Y from two 
populations, the probability of X being greater than Y is equal to the probability 
of Y being greater than X. The alternative hypothesis is that one population 
is stochastically greater than the other. In the context of Fig. 2, since we are 
comparing the average performance over all data sets, the population consists 
of the average performance of a given method computed from different random 
seeds. This satisfies the assumption that the observations in each population are 
independent of each other.

FoldX. The FoldX suite20 evaluates the effect of mutations on the stability of 
proteins. To derive stability features from FoldX, we use the ‘total energy’ output 
from the BuildModel command in FoldX 5.0. We used Protein Data Bank (PDB) 
structure 2WUR for the GFP following Sarkisyan et al.33, and PDB structures 6R5K 
and 2KR4 for the poly(A)-binding protein RRM domain and the ubiquitination 
factor E4B U-box domain, respectively. Unfortunately, among these three proteins, 
only the GFP has atomic resolution structure determined by X-ray crystallography. 
The only structures available for the other two domains are determined by 
nuclear magnetic resonance and electron microscopy at lower resolutions. 
Higher-resolution structures could potentially make FoldX-derived features more 
useful on those two domains.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All protein fitness data were publicly available through citations available in the 
paper. A processed version of these data and our evaluation results are available 
on Dryad with https://doi.org/10.6078/D1K71B. All protein structures used in the 
study are available publicly with PDB IDs 2WUR, 6R5K and 2KR4.

Code availability
The code to reproduce the results is available at https://github.com/chloechsu/
combining-evolutionary-and-assay-labelled-data.

references
 60. Georgiev, A. G. Interpretable numerical descriptors of amino acid space. J. 

Comput. Biol. 16, 703–723 (2009).
 61. Kawashima, S. et al. Aaindex: amino acid index database, progress report 

2008. Nucleic Acids Res. 36, D202–5 (2007).
 62. Eddy, S. R. Profile hidden Markov models. Bioinformatics 14,  

755–763 (1998).
 63. Besag, J. Statistical analysis of non-lattice data. J. Royal Stat. Soc.: Ser. D. 

Statistician 24, 179–195 (1975).

 64. Stein, R. R., Marks, D. S. & Sander, C. Inferring pairwise interactions from 
biological data using maximum-entropy probability models. PLoS Comput. 
Biol. 11, e1004182 (2015).

 65. Blondel, M., Teboul, O., Berthet, Q. & Djolonga, J. Fast differentiable sorting 
and ranking. In Proc. International Conference on Machine Learning (eds Hal, 
D., III & Aarti, S.) 950–959 (PMLR, 2020).

acknowledgements
We thank A. Aghazadeh, P. Almhjell, F. Arnold, A. Busia, D. Brookes, M. Jagota, K. 
Johnston, L. Schaus, N. Thomas, Y. Wang and B. Wittmann for helpful discussions. We 
also thank P. Barrat-Charlaix, S. Biswas, J. Meier and Z. Shamsi for providing helpful 
details about their methods and implementations. Partial support was provided by the 
US Department of Energy, Office of Biological and Environmental Research, Genomic 
Science Program Lawrence Livermore National Laboratory’s Secure Biosystems Design 
Scientific Focus Area under grant award no. SCW1710 (J.L., C.H.), the Chan Zuckerberg 
Investigator program (J.L.) and C3.ai (J.L., H.N.). Research reported in this publication 
was supported by the National Library Of Medicine of the National Institutes of Health 
under grant award no. T32LM012417 (H.N.). The content is solely the responsibility of 
the authors and does not necessarily represent the official views of the National Institutes 
of Health. This material is based on work supported by the National Science Foundation 
Graduate Research Fellowship Program under grant no. DGE 2146752 (C.F.).

author contributions
C.H. and J.L. conceptualized the study and developed the methodology. C.H. 
implemented models and analyzed data, with contributions from H.N. and C.F. All 
authors wrote the paper.

Competing interests
J.L. is on the Scientific Advisory Board of Patch Biosciences and Foresite Laboratories. 
The remaining authors declare no competing interests.

additional information
Extended data are available for this paper at https://doi.org/10.1038/
s41587-021-01146-5.

Supplementary information The online version contains supplementary material 
available at https://doi.org/10.1038/s41587-021-01146-5.

Correspondence and requests for materials should be addressed to Chloe Hsu or  
Jennifer Listgarten.

Peer review information Nature Biotechnology thanks the anonymous reviewers for their 
contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Nature BioteCHNoLogy | www.nature.com/naturebiotechnology

https://doi.org/10.2210/pdb2WUR/pdb
https://doi.org/10.2210/pdb6R5K/pdb
https://doi.org/10.2210/pdb2KR4/pdb
https://doi.org/10.6078/D1K71B
https://doi.org/10.2210/pdb2WUR/pdb
https://doi.org/10.2210/pdb6R5K/pdb
https://doi.org/10.2210/pdb2KR4/pdb
https://github.com/chloechsu/combining-evolutionary-and-assay-labelled-data
https://github.com/chloechsu/combining-evolutionary-and-assay-labelled-data
https://doi.org/10.1038/s41587-021-01146-5
https://doi.org/10.1038/s41587-021-01146-5
https://doi.org/10.1038/s41587-021-01146-5
http://www.nature.com/reprints
http://www.nature.com/naturebiotechnology


Articles NaTurE BiOTEchNOlOgy

Extended Data Fig. 1 | Performance of existing methods and the augmented Potts model with NDCg. Analog of Fig. 2, but using NDCG instead of 
Spearman correlation. (a) Average performance across all 19 data sets, as measured by NDCG. The horizontal axis shows the number of supervised 
training examples used. Error bars are centered at the mean and indicate bootstrapped 95% confidence intervals estimated from 20 random splits of 
training and test data. Asterisks (*) indicate that P < 0.01 among all two-sided Mann-Whitney U tests that the augmented Potts model has different 
performance from each other method, at a given sample size. In particular, the largest such p-value for each training set size was r es pe ct iv ely, 
P  = 3.9 × 10−2, 6.9 × 10−7, 2.2 × 10−7, 7.9 × 10−8, 7.7 × 10−4, 6.8 × 10−8, 6.8 × 10−8, 6.8 × 10−8 and P = 7.7 × 10−4 for the 80-20 split. (b) Average performance 
across all three data sets containing double mutant sequences (sequences that are two mutations away from the wild-type), and restricted to testing on 
only double mutants.
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Extended Data Fig. 2 | Performance on individual data sets when trained on limited labeled data. A breakdown of averaged Spearman correlation results 
presented in Fig. 2a by individual data set. See Supplementary Fig. 1 for the analogous plot using NDCG. Error bands are centered at mean and indicate 
bootstrapped 95% confidence interval from 20 random data splits.
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Extended Data Fig. 3 | Performance on individual data sets when trained on 80% data. A breakdown of averaged Spearman correlation results presented 
in the right-side mini-panel in Fig. 2a, on 80-20 splits, by individual data set. See Supplementary Fig. 2 for the analogous plot using NDCG. Error bars 
indicate bootstrapped 95% confidence interval from 20 random data splits. Box-and-whisker plots show the first and third quartiles as well as median 
values. The upper and lower whiskers extend from the hinge to the largest or smallest value no further than 1.5 x interquartile range from the hinge.
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Extended Data Fig. 4 | augmented approach using different probability density models, with NDCg. Analogous to Fig. 3, but using NDCG. Methods are 
compared with their augmented counterpart, using matching colors on each pair. Flat, horizontal lines represent evolutionary density models that do not 
have access to assay-labeled data. Dashed lines indicate existing methods. Error bars are centered at the mean and indicate bootstrapped 95% confidence 
interval from 20 random data splits.
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Extended Data Fig. 5 | Performance on individual data sets with NDCg. Analogous to Fig. 4, but using NDCG. (a) Other than the EVmutation Potts model, 
the DeepSequence VAE, and Profile HMM, none of which use supervised data, all other methods here used 240 labeled training sequences. Each colored 
dot is the average NDCG from 20 random train-test splits. Random horizontal jitter was added for display purposes. The bottom row of black dots indicates 
the effective MSA size determined by accounting for sequence similarity with sample reweighting at 80% identity cutoff. (b) Summary of how often each 
modeling strategy had maximal NDCG. Such modelling strategies were determined by first identifying the top-performing strategy for any given scenario, 
and then also identifying any other strategy that came within the 95% confidence interval of the top performer.
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Extended Data Fig. 6 | the distribution of best model(s) on each data set. Analogous to Fig. 4b, but varying the number of assay-labeled training 
examples. (a) Summary of how often each modelling strategy had maximal Spearman correlation. Such modelling strategies were determined by first 
identifying the top-performing strategy for any given scenario, and then also identifying any other strategy that came within the 95% confidence interval of 
the top performer. Four settings are used: with no assay-labeled data, when training on 48 or 240 assay-labeled single-mutant examples, and in the 80-20 
train-test split setting. (b) Summary of how often each modelling strategy had maximal NDCG.
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Extended Data Fig. 7 | extrapolation performance from single and double mutants to higher-order mutants. Analogous to Fig. 5, but training on a 
random sample from both single and double mutants. Each column shows the performance when training on randomly sampled single mutants and then 
separately testing on single, double, or triple mutants, none of which were in the training data. The total size (TS) indicates the total number of mutants 
of a particular order in all of the data. For example, ‘TS=613’ for single mutants means there were 613 total single mutants in the data set that we sampled 
from. Error bars are centered at the mean and indicate bootstrapped 95% confidence interval from 20 random data splits. See Supplementary Fig. 6 for 
analogous plot using NDCG.
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Extended Data Fig. 8 | edit distance from wild-type sequence as a predictive model (uBe4B u-box domain). Analogous to Fig. 6, but on the UBE4B 
U-box domain data set. We compared the performance of non-augmented evolutionary density models to two predictive models that use only the edit 
distance of a sequence to the wild type. In one version, the edit distance is defined as the number of mutations away from the wild type. In the other 
version, we used BLOSUM62 to compute the distance from wild type, which thus accounts not only for the number of mutations, but also the type of 
mutation. Each dot represents a UBE4B U-box domain sequence, with darker colors indicating larger distances from the wild-type.
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Extended Data Fig. 9 | FoldX predictions as additional features in augmented models. Each column shows the performance of augmented models with 
a single FoldX-derived stability feature added, when training on randomly sampled single mutants and then separately testing on single, double, or triple 
mutants. It also shows augmentation of two density models at the same time, without FoldX, as in “Augmented VAE + Potts”. Error bars are centered at 
the mean and indicate bootstrapped 95% confidence interval from 20 random data splits. See Supplementary Fig. 7 for analogous evaluation with NDCG.
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Extended Data Fig. 10 | Performance of linear model using only one feature per site (not per amino acid at each site). In addition to the linear model 
with one-hot encoded, site-specific amino acid features, we also evaluated a simpler linear model with position-only features that encode which sites 
are mutated. The evaluation uses Spearman correlation. Each column shows the performance when training on randomly sampled single mutants and 
then separately testing on single, double, or triple mutants, none of which were in the training data. Error bars are centered at the mean and indicate 
bootstrapped 95% confidence interval from 20 random data splits.
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