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ABSTRACT

Context. Radio interferometry has always faced the problem of incomplete sampling of the Fourier plane. A possible remedy can
be found in the promising new theory of compressed sensing (CS), which allows for the accurate recovery of sparse signals from
sub-Nyquist sampling given certain measurement conditions.
Aims. We provide an introductory assessment of optimal arrays for CS in snapshot-mode radio interferometry, using orthogonal
matching pursuit (OMP), a widely used CS recovery algorithm similar in some respects to CLEAN. We focus on comparing centrally
condensed (specifically, Gaussian) arrays to uniform arrays, and randomized arrays to deterministic arrays such as the VLA.
Methods. The theory of CS is grounded in a) sparse representation of signals and b) measurement matrices of low coherence. We
calculate the mutual coherence of measurement matrices as a theoretical indicator of arrays’ suitability for OMP, based on the recovery
error bounds in Donoho et al. (2006, IEEE Trans. Inform. Theory, 52, 1289). OMP reconstructions of both point and extended objects
are also run from simulated incomplete data. Optimal arrays are considered for objects represented in 1) the natural pixel basis and 2)
the block discrete cosine transform (BDCT).
Results. We find that reconstructions of the pixel representation perform best with the uniform random array, while reconstructions
of the BDCT representation perform best with normal random arrays. Slight randomization to the VLA also improves it dramatically
for CS recovery with the pixel basis.
Conclusions. In the pixel basis, array design for CS reflects known principles of array design for small numbers of antennas, namely
of randomness and uniform distribution. Differing results with the BDCT, however, emphasize the need to study how sparsifying
bases affect array design before CS can be optimized for radio interferometry.
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1. Introduction

Interferometry is the definitive imaging tool of radio astronomy,
probing high-resolution structures by using an array of many
antennas to emulate a single lens whose aperture is the great-
est distance between a pair of antennas (Thompson et al. 2001).
By measuring the visibility, or the interference fringes of the ra-
dio signal at every pair of antennas, an array samples the two-
dimensional Fourier transform of the spatial intensity distribu-
tion of the source. Ideally, if we thoroughly sample the Fourier,
or u-v plane, we can then invert the transform to reconstruct the
object. The vast amount of data required has motivated a new
generation of ambitious interferometers, including the Atacama
Large Millimetre/submillimetre Array (ALMA) and the Square
Kilometre Array (SKA), which will use several thousand anten-
nas. Meanwhile, smaller interferometers often sample over a pe-
riod of time, allowing the rotation of the earth to naturally pro-
duce new baselines.

Despite such measures, there are always irregular holes on
the u-v plane where sampling of the visibility function is thin or
simply nonexistent. This data deficiency is currently managed
by interpolating or filling in zeros for unknown visibility values,
and applying deconvolution algorithms such as CLEAN and its
variants (Högbom 1974; Clark 1980) to the resulting dirty im-
ages. However, it may not be necessary to collect the extensive
data set in the first place.

Among signal processing’s most promising developments in
recent years is the theory of compressed sensing (CS), which

has shown that the information of a signal can be recovered
even when sampling does not fulfill the fundamental Nyquist
rate (Donoho 2006; Candès et al. 2006a,b). The theory revolves
around a priori knowledge that the signal is sparse or compress-
ible in some basis, in which case its information naturally resides
in a relatively small number of coefficients. Instead of directly
sampling the signal, whereby full sampling would be inevitable
in locating every non-zero or significant coefficient, CS allows
us to compute just a few inner products of the signal along se-
lected measurement vectors of certain favorable characteristics.
The novelty of CS is that it takes advantage of signal compress-
ibility to alleviate expensive data acquisition, not just expensive
data storage.

It is well established that objects typical of astronomic study
are sparse or compressible (Polygiannakis 2003; Dollet 2004);
indeed, they are often sparse in the natural pixel basis. Recent
studies have recognized this innate agreeability with CS, exam-
ining its potential in radio interferometry compared to traditional
deconvolution methods (Wiaux et al. 2009; Li et al. 2011) as
well as methods for applying it to wide field-of-view interfer-
ometry (McEwen & Wiaux 2011). As in traditional interferome-
try, however, reliable imaging will depend heavily on the sample
distribution the array produces on the u-v plane. CS involves un-
usual premises for sampling, e.g., that we actively purpose to
undersample, and rethinking array design to complement these
premises is a critical step before CS can be applied in practice.

In this paper, we survey idealized arrays that optimize the
performance of a CS recovery algorithm known as orthogonal
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matching pursuit (OMP; Davis et al. 1997; Pati et al. 1993; Tropp
& Gilbert 2007) for snapshot-mode observations when objects
are sparsely represented 1) in the pixel basis and 2) by the block
discrete cosine transform (BDCT). We focus on how arrays af-
fect measurement matrix incoherence, a popular parameter in
CS performance guarantees, and also simulate reconstructions
of both point and extended objects. Among the tested arrays, we
find that with the pixel basis a uniform random distribution of
antennas performs best, while with the BDCT a normal random
distribution performs best. (Initial results with the pixel basis
were also briefly summarized in Fannjiang 2011.) We also study
the benefits of slight perturbation to the VLA’s patterned “Y”
array, as well as the unexpected inability of measurement ma-
trix incoherence to predict OMP reconstruction behavior with
the BDCT.

In Sect. 2, we give a brief description of the CS framework
as it pertains to radio interferometry and array optimization. The
arrays under study are summarized in Sect. 3. Using the pixel
basis, Sect. 4 analyzes how these arrays affect the incoherence
of the measurement matrix, as well as OMP reconstructions of
point and extended objects. Section 5 does the same in under-
resolved conditions. Section 6 adopts the BDCT instead of the
pixel basis to sparsely represent objects, also examining mea-
surement matrix incoherence and extended object reconstruc-
tions. The conclusions are drawn in Sect. 7.

2. Compressed sensing

2.1. Overview

Consider a signal x ∈ RN , which has a sparse representation s
with the columns of an N × N basis matrix Ψ, such that x = Ψs.
Given that s is S -sparse, meaning it has only S � N non-zero
components (or, more generally, given that s is S -compressible
and has only S � N significant components) and given mea-
surement vectors of certain desirable characteristics, CS pro-
poses that we should not have to take the complete set of N
inner-product measurements to recover the signal. If Θ is an
M × N matrix whose M < N rows are the measurement vec-
tors, then CS aims to invert the underdetermined linear system
y = ΘΨs = Φs, where y is a vector of the M < N measurements
of x and we call Φ the measurement matrix.

If s is sparse, it follows that we seek a sparse solution to the
inverse problem. Indeed, in the absence of noise s is the spars-
est solution, i.e., ŝ subject to y = Φŝ with the least number of
non-zero components. A direct search for this solution, however,
is computationally intractable. Given Φ of favorable character-
istics (described below), an �1-minimization problem is often
solved instead, such that we search for the solution ŝ with the
smallest �1-norm, or sum of the absolute values of the coeffi-
cients. CS recovery schemes also include greedy methods such
as OMP, which we use in this paper. Faster than basis pursuit
(BP; Chen et al. 1992) and LASSO (Tibshirani 1996), the classic
�1-minimization methods, OMP was also chosen for its parallels
to CLEAN: both iteratively select point sources in a greedy fash-
ion until the residual falls below some stopping threshold. The
one difference is that OMP calculates each new residual by sub-
tracting an orthogonal projection of the data onto the span of all
columns of Φ selected so far, rather than simply subtracting the
visibility of the point source selected in the current iteration (see
Sect. 2.3, and Pati et al. 1993; Davis et al. 1997 for a rigorous
presentation).

Recovering x requires that the measurement matrix Φ =
ΘΨ does not corrupt or lose key features of s in mapping

higher-dimension s to the lower-dimension y. An intuitive ideal
is thatΦ should nearly preserve the Euclidean norm of s, which
means that every possible subset of S columns of Φ should
act close to an orthonormal system. A rigorous formulation
of such a quality is known as the restricted isometry property
(RIP; Candès & Tao 2005), but it cannot be verified empiri-
cally; checking every S -combination of columns of Φ for near-
orthogonality is a combinatorial process and NP-hard. An al-
ternative metric that we use is mutual coherence (MC), which
can guarantee the RIP (a relationship derived in Davenport et al.
2012, from results in Gers̆gorin 1931) and is well-suited for nu-
merical experimentation. MC gives the maximum correlation
between any pair of columns ofΦ:

μ(Φ) = max
1≤ j� j′≤N

|Φ j ·Φ j′|
‖Φ j‖2‖Φ j′‖2 · (1)

An incoherent matrix with a near-zero MC is desired. Error
bounds for the performance of the mainstream CS recovery pro-
cesses, including BP (Donoho et al. 2006), LASSO (Candès &
Plan 2009), and OMP (Donoho et al. 2006) have been developed
based on MC. For OMP, suppose the sparsity S of s satisfies

S ≤ 1 + μ − 2n
2μ

, (2)

where n is the ratio of ε, the norm of the noise in the measure-
ments, to the absolute value of the least non-zero component
of s. Then OMP is guaranteed to find the solution ŝ such that

supp(ŝ) = supp(s), (3)

where supp gives the support of its argument, i.e., the indices of
the non-zero components, and

‖ŝ − s‖22 ≤
ε2

1 − μ(S − 1)
, (4)

as proven by Donoho et al. (2006). These bounds use ε as the
stopping criterion for OMP, i.e., the recovery process stops when
||V −ΦÎ||2 ≤ ε where Î is the reconstruction of I. An important
note is that these error bounds were developed to encompass all
possibleΦ and s combinations, regardless of how ill-suited they
are for CS. In practice, when the measurement scheme and ob-
ject sparsity are tailored for CS application, OMP outperforms
these bounds dramatically. In this paper, we thus refer to these
bounds as a general representation of the dependence of CS al-
gorithms on measurement matrix incoherence, rather than as a
strict prediction of error in reconstruction.

2.2. Application to interferometric array optimization

The van Cittert-Zernike theorem gives the visibility function, as
measured by two point antennas, over the viewing window P as

V(b) =
∫

P
I(p)e−2πib·p dp (5)

where I(p) is the intensity of the radiation from angular direc-
tion p, and b is the baseline, or displacement between the anten-
nas, projected onto the plane orthogonal to the source propaga-
tion and divided by the wavelength observed. Assuming a small
field of view, such that the object I lives on the plane instead of
the sphere, the visibility measurements can be approximated as

V ≈ (Δp)2
∑

k

I(pk)e−2πib·pk . (6)
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In other words, Θ is a “partial” two-dimensional Fourier trans-
form, where the array’s baselines b dictate which Fourier co-
efficients are captured. Since we capture a Fourier coefficient
with every baseline, or pair of antennas, an array with a anten-
nas yields a(a−1)

2 measurements in a snapshot. (Because an array
cannot sample the entire u-v plane, neitherΘ nor V are properly
the Fourier transform matrix or the Fourier transform of I, re-
spectively. Unmeasured Fourier coefficients are absent in V, and
the corresponding rows are likewise absent in Θ.)

Due to the role of the baselines in selecting the rows of Θ,
the array is critical in designing an incoherent Φ. In the well-
sampled case, the general consensus is that a centrally condensed
or bell-shaped distribution of baselines produces more favor-
able near-in and far side-lobe patterns, and thus superior images,
than a uniform distribution of baselines (Boone 2002; Holdaway
1996, 1997; Kogan 1997; Woody 2001a,b). Such distributions
pursue an ideal clean beam that is both highly localized and free
of lobes, e.g., a Gaussian. Array optimization depends on the
imaging objectives in mind, however, and as we intend to un-
dersample in a way that facilitates CS, minimizing MC is our
objective. Incidentally, the calculation of MC in Eq. (1) is syn-
onymous to that of an array’s peak side-lobe whenΨ is the pixel
basis, and can be interpreted similarly.

Early in the development of CS it was shown that a matrix
built by uniformly and randomly selecting rows from a discrete
Fourier transform obeys the RIP. Thus, objects can be stably
recovered from partial, uniform random Fourier measurements
through �1-norm minimization (Candès et al. 2006a,b), the main-
stream method for CS recovery. This fundamental result sug-
gests that an array with a uniform random distribution of base-
lines should work well with CS when the pixel basis is used. In
fact, (Candès et al. 2006a) noted that their results should be of
particular interest to interferometric imaging in astronomy.

Object sparsity is the other key factor. A basis matrix Ψ that
results in a more coherent measurement matrixΦ may compen-
sate by providing a far sparser representation of the object than
the natural pixel basis. In addition to the pixel basis, where Ψ is
simply the identity, we also consider the two-dimensional block
discrete cosine transform (BDCT). Used extensively in image
compression, the BDCT divides an image into blocks and de-
composes each into a sum of cosines of different frequencies. In
both bases we focus on the suitability of random and randomized
arrays, as random sampling has often proven to be inseparable
from CS theory. We compare their performances with that of
the “Y”-shaped configuration currently used by the Very Large
Array (VLA). To study the most basic behavior of arrays, we
focus on snapshot-mode observations and do not involve Earth
rotation.

2.3. Orthogonal matching pursuit

OMP is a variant of the matching pursuit (MP) process, which
searches for the sparsest reconstruction Î subject to ΦI = V by
iteratively projecting the data V onto greedily chosen columns of
the measurement matrix Φ until a “best match” to the object I
is found. We start with the assumption that the original object
is S -sparse (S is unknown), and that the data V is therefore a
linear combination of S columns, not all N columns, of Φ. The
goal is to find which subset of S columns participate, as we have
no idea which S components of I are non-zero. By finding these
S columns, OMP can compute z, a vector of the non-zero com-
ponents of the reconstruction Î.

We first initialize the residual r0 = V, the set of chosen col-
umn indices α0 = ∅, and the matrix of chosen columns φ0 to
the empty matrix. At iteration t OMP finds the column ofΦ that
has the highest coherence with the residual, as this column likely
contributes the most to the remaining data:

kt = argmax1≤k≤N |rt−1 ·Φk | (7)

whereΦk is the kth column ofΦ. This column should represent
the brightest remaining pixel in the object I. We then add kt to
the set of chosen column indices, and add Φkt to the matrix of
chosen columns.

αt = αt−1 ∪ {kt} (8)

φt = [φt−1 Φkt ]. (9)

We can then solve the least-squares problem to update zt

zt = argminz||V − φt z||2 (10)

and use it to update the data and the residual.

Vt = φt zt (11)

rt = V − Vt (12)

OMP then returns to Eq. (7) and iterates unless ||rt||2 ≤ δ||V||2,
where δ||V||2 is the stopping criterion (here, δ = 0.01 due to the
noise parameters described in Sect. 4). In essence, at each it-
eration OMP greedily choses a column from Φ, and calculates
a new residual by subtracting away from the data its orthogo-
nal projection onto the span of all the columns chosen so far.
Ideally, each iteration locates the brightest remaining pixel in
the object I, and removes the collective contribution from all the
pixels chosen so far from the data. Let α̂ and ẑ denote the final
outputs of OMP. Then the reconstruction Î has non-zero com-
ponents only at the indices in α̂, where its non-zero component
at km is the mth component of ẑ. Here we use the most generic
form of OMP, which obeys the process above with no other con-
straints on the reconstruction (in particular, we did not enforce
non-negativity).

As formally shown in (Lannes et al. 1997), the traditional de-
convolution algorithm CLEAN is a non-orthogonal MP process.
Each iteration greedily chooses the brightest remaining pixel in
the image and removes its contribution to the data, until the
residual falls below some threshold. The critical difference be-
tween OMP and non-orthogonal MPs like CLEAN is Eq. (10):
CLEAN does not project the data onto all the columns chosen so
far, which enables OMP to flexibly update the components of z
on all past chosen columns at every iteration. The basic CLEAN
simply removes the component of the data on the column chosen
in the current iteration. This difference makes OMP the superior
recovery algorithm: when the dimension of z is large, the orthog-
onal projection enables the residual to converge to 0 far more
quickly. Unlike MP, OMP is also guaranteed to converge in a
finite number of iterations in finite-dimensional spaces (Davis
et al. 1994, 1997). OMP and its many variants are widely used
in CS, and their structural closeness to CLEAN is part of the
natural suitability of CS for radio interferometry.

3. Arrays

The arrays under study are the uniform random array (URA); the
truncated normal random array (NRA), where sampling cover-
age beyond the predetermined aperture is removed; an array de-
fined by the Hammersley point set, a low-discrepancy sequence
widely used in quasi-Monte Carlo methods (Neiderreiter 1987);
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Fig. 1. Antenna distribution of a URA (top) and its baseline distribution
(bottom).

and a VLA-based “Y” configuration. (In “Y” arrays other than
of 27 antennas, the distances between antennas along an arm
are based on the current ratios of distances in the VLA). We
also create a modification of the “Y” array, called YOPP (“Y”,
Outermost antennas Perpendicularly Perturbed), in which the
three outermost antennas on each arm of the “Y” are perturbed
a random distance in the direction perpendicular to their respec-
tive arm. The maximum perturbation distance is set to 30% of the
mean distance between adjacent antennas on an arm (see Fig. 4).
In arrays other than of 27 antennas, the outermost third of the an-
tennas on each arm are perturbed this way.

The standard deviation (SD) of an NRA describes the con-
tinuous normal distribution sampled by the antenna locations. It
is not the standard deviation of the actual discrete distribution
of antennas. Also note that the baseline distribution, not the an-
tenna distribution, determines where the u-v plane is sampled.
In particular, the URA does not correspond to a uniform random
distribution of baselines.

4. Pixel basis in the well-resolved case

We compute the MC of measurement matrices as the number
of antennas increases in each array. For the randomized arrays
(URA, NRA, and YOPP), the MC plotted is the mean of 50 inde-
pendent instances of the array. We also run OMP reconstructions
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Fig. 2. Antennas distributed according to the Hammersley point set
(top) and the corresponding baseline distribution (bottom).

on objects of increasing sparsity, which are 60 × 60 grids with
random point sources and Gaussian white noise. The noise has
a standard deviation of σ = 0.01||V||2√

M
, where M is the dimension

of V. For the randomized arrays, the reconstruction rate plotted
is the mean of 5 independent instances of the array, on 200 inde-
pendent trials for each level of object sparsity. To provide a di-
rect comparison to the existing VLA configuration, arrays with
27 antennas are used in the reconstructions. Correspondingly, the
measurement matrices in the MC computations have the dimen-
sions 351 × 3600, where 351 = 27(27−1)

2 . In the reconstructions
of random point sources, a reconstruction Î is deemed successful
if the relative error (RE) from the original object I is less than or
equal to 0.01, where the RE is defined as

RE =
||Î − I||2
||I||2 · (13)

4.1. Mutual coherence and random point sources

In Fig. 5, the URA provides the most incoherent measurement
matrices, suggesting its suitability for OMP. It is also the only
array whose MC appears to approach zero as the number of
antennas grows large – an important detail, as in theory it im-
plies that OMP reconstructions can be improved indefinitely by
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Fig. 3. Antenna distribution of an NRA with SD = 0.18 (top) and its
baseline distribution (bottom).

adding more antennas to the array. The particular normal random
array (NRA) shown does not reveal how MC varies by SD (see
Sect. 4.2); here, with SD = 0.14, the array provides highly co-
herent measurement matrices. The “Y” array also gives a higher
MC than the uniform random array, as its distinct patterns likely
strengthen correlations between the columns ofΦ. Similarly, the
Hammersley array is generated by a deterministic formula, and
the resulting correlations in the measurement information prob-
ably cause its poor performance. The MC curves of both these
arrays also fluctuate, rather than monotonically decrease: with
such rigid patterns, even the slightest deviations in the relation-
ships between antennas can throw off trends in the MC.

The randomized modification YOPP performs nearly iden-
tically to the URA when the number of antennas is not too
high, e.g. with 27 antennas. This has exciting implications for
the VLA and other patterned arrays – with slight random per-
turbation to just 9 antennas, the MC is significantly decreased,
tailoring it for CS application. The benefits do not appear to last
as the number of antennas grows large, but for a moderate num-
ber it is a surprisingly effective improvement.

Corresponding to the MC results, the OMP reconstruction
performances of the URA and YOPP with 27 antennas are nearly
identical. Both attain the highest “threshold” sparsity, or maxi-
mum object sparsity with 100% reconstruction success – about
200 point sources – and are clearly superior to the “Y” array
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Fig. 4. Antenna distribution of the modified array “YOPP” (top) and
its baseline distribution (bottom), compared to the antenna and base-
line distribution of the VLA-based “Y” array. Original versions of these
figures appeared in Fannjiang (2011).

and NRA, which have threshold sparsities of about 100 and 125,
respectively. The high MC of the Hammersley array causes its
reconstruction performance to decay rapidly with only a handful
of point sources.

4.2. Uniform and normal random arrays

This section examines the spectrum from centrally condensed
to uniform baseline distributions, which has been a focus of ar-
ray design in traditional interferometry. Specifically, we look at
normal and uniform random arrays of antennas. As the SD of
an NRA decreases and the array becomes more concentrated,
the measurement matrices grow more coherent; conversely, as
the arrays become less concentrated, the MC decreases and
approaches that of the URA. The OMP reconstruction results
largely follow these trends; however, there are two interesting
differences. Though the MC curves decrease at a roughly linear
rate as the SD of the array increases, the reconstruction proba-
bility curves do not appear to increase in any clear mathematical
relationship to the MC results, as the relationships in (Donoho
et al. 2006) would suggest.

Secondly, though an NRA cannot better the reconstruction
performance of a URA, it attains the same threshold sparsity
with SD ≥ 0.16. However, the measurement matrix of an NRA
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Fig. 5. Mutual coherence of measurement matrices as the number of
antennas in the array increases (top) and rate of successful OMP recon-
structions of random point sources with arrays of 27 antennas (bottom).
For the randomized arrays (URA, NRA, and YOPP), the MC plotted
is the mean of 50 independent instances of the array. The reconstruc-
tion rate plotted is the mean of 5 independent instances of the array,
on 200 independent trials for each level of sparsity. A reconstruction is
deemed successful if the relative error RE ≤ 0.01. Original versions of
these figures appeared in Fannjiang (2011).

with an SD of 0.16 is still much more coherent than that of a
URA. These discrepancies between the two experiments, though
subtle, indicate the presence of factors at play other than MC,
an observation that becomes more relevant with the BDCT in
Sect. 6.

We also emphasize that while the NRA may be able to imi-
tate the URA with 27 antennas, its MC behavior still differs fun-
damentally as it fails to continue approaching zero as the number
of antennas grows large.

4.3. Extended object reconstructions

The probability curves in the previous subsections are based on
reconstructions of random point sources. Here we broaden those
results to reconstructions of a more realistic extended source,
the black hole system 3C75. A 120 × 120-pixel image is used
as the object, where all pixel brightness values are normalized
by the maximum brightness value to lie on [0, 1]. Snapshot-
mode measurements are simulated from 100 antennas. Again,
the URA produces an exceptionally accurate reconstruction of
the object in Fig. 7b. The performances of the two NRAs reflect
the nuances in antenna concentration seen in Fig. 6: though an
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Fig. 6. Mutual coherence of measurement matrices as the number of
antennas in the array increases (top) and rate of successful OMP recon-
structions of random point sources (bottom) as the standard deviation
(SD) of the normal random array is increased. The MC plotted is the
mean of 50 independent instances of each array. The reconstruction rate
plotted is the mean of 5 independent instances of each array, on 200 in-
dependent trials for each level of sparsity. A reconstruction is deemed
successful if the relative error RE ≤ 0.01.

array with SD = 0.14 produces a distinct checkerboard pattern
of missed pixels, increasing the SD to just 0.18 erases these ar-
tifacts and greatly improves the accuracy of the reconstruction.
Visually speaking, its reconstruction appears comparable to the
URA’s benchmark.

The checkerboard artifact displayed by an NRA with SD =
0.14 is an interesting phenomenon that can be linked to high
MC when pixels of non-zero intensity are adjacent (rather than
randomly scattered, as in the previous subsections). Adjacent
columns ofΦ, corresponding to the measurement information of
adjacent pixels, naturally tend to be more coherent than columns
that are far apart. Thus, OMP is more likely to misinterpret
which of two given columns contributed most to the data (equiv-
alently, which of the two pixels is brighter in the object) if they
are adjacent. This mishandling of adjacent pixels is more prone
to occur if Φ has a high MC, and could thus cause the checker-
board pattern as well as the striped artifacts produced by the
“Y” array. The slight randomization in the YOPP array reme-
dies these artifacts enormously, again proving to be a simple yet
effective modification. Though the noise-like structures to the
left do display faint checkerboard artifacts, the main body of the
galaxy is reconstructed accurately and the relative error (RE) is
comparable to that of an NRA with SD = 0.18.
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(a) (b)

(c) (d)

(f)(e)

Fig. 7. OMP reconstructions with the pixel basis of the object a), ra-
dio emission from 3C75, simulated with measurements from a URA in
b) (RE= 1.69 ×10−4), an NRA of SD = 0.14 in c) (RE = 0.763), an NRA
of SD = 0.18 in d) (RE= 0.0150), the VLA-based “Y” array in e) (RE=
0.179), and the YOPP array in f) (RE = 0.0187). All pixel brightness
values in the object and reconstructions are normalized by the object’s
maximum pixel brightness value, to lie on [0, 1]. Image a) can be found
at http://images.nrao.edu/29 (courtesy of NRAO/AUI and F.N.
Owen, C.P. O’Dea, M. Inoue, and J. Eilek). Original versions of a)–c),
e), and f) appeared in Fannjiang (2011).

The point and extended source reconstructions both confirm
the URA as the ideal array for CS with the pixel basis, notably
over patterned arrays like the VLA. This finding counters that
of Wenger et al. (2010), the only other study on interferomet-
ric arrays for CS to our knowledge, which found that a uni-
form random baseline distribution (URB) performs significantly
worse than the patterned VLA baseline distribution. However, a
measurement matrix Φ generated with a URB is precisely the
matrix of uniform, random Fourier measurement vectors proven
in Candès et al. (2006a,b) to obey conditions guaranteeing sta-
ble CS recovery. Though we used a URA, whose baselines do
not strictly follow a uniform random distribution, the underlying
principles of uniformity and randomness make our results much
more consistent with the established theorem. Random, as op-
posed to deterministic, sampling has always been fundamental
to CS theory.

5. Super-resolution with the pixel basis

Here we numerically test the suitability of arrays for CS in the
under-resolved case. The diffraction limit is broken by decreas-
ing the aperture of the array such that AR

λ
< 1, where A is the

aperture, R is the angular resolution, and λ is the signal wave-
length. R and λ are kept constant. All other experimental param-
eters follow those described in Sect. 4.
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Fig. 8. Mutual coherence of measurement matrices by aperture size
(top) and rate of successful OMP reconstructions of random point
sources (bottom) in the under-resolved case. Both experiments are with
arrays of 27 antennas. In the top panel, the x-axis gives the ratio of the
aperture size in the under-resolved case to the aperture size in the well-
resolved case. In the bottom panel, this relative aperture size is 0.5. For
the randomized arrays (URA, NRA, and YOPP), the MC plotted is the
mean of 50 independent instances of the array. The reconstruction rate
plotted is the mean of 5 independent instances of the array, on 500 in-
dependent trials for each level of sparsity. A reconstruction is deemed
successful if the relative error RE ≤ 0.01. Original versions of these
figures appeared in Fannjiang (2011).

5.1. Array comparisons with random point sources

For arrays of 27 antennas, the URA again provides the lowest
MC, and by a far greater margin than in the well-resolved case
when AR

λ falls below 0.8. The OMP reconstruction curves, sim-
ulated when AR

λ
= 0.5, confirm the URA’s capacity for super-

resolution of point sources. While it attains a threshold sparsity
of about 125 point sources, no other tested array displays any-
thing near this potential. The URA’s super-resolving capabilities
are likely due to its higher proportion of large baselines, which
results in an increased sensitivity to the high-frequency Fourier
components of an object. The array’s reconstructions of point
sources in Sect. 4 are probably superior for the same reason.

Since decreasing aperture size has the effect of condensing
an array, it is intuitive to reason that a far greater SD than in
the well-resolved case is needed to imitate a URA. Similarly,
the random perturbation in YOPP does not appear to improve
on the “Y” array here. The maximum perturbation distance in
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(d)(c)

(b)(a)

Fig. 9. OMP reconstructions with the pixel basis of the object from
Fig. 7a, radio emission from 3C75, simulated with measurements from
a URA in a) (RE = 2.89 ×10−4), an NRA of SD = 0.18 in b) (RE =
5.4617), the “Y” array in c) (RE = 0.840), and the YOPP array in d) in
the under-resolved case when AR

λ
= 0.75. All pixel brightness values

in the object and reconstructions are normalized by the object’s max-
imum pixel brightness value, to lie on [0, 1]. Image a) can be found
at http://images.nrao.edu/29 (courtesy of NRAO/AUI and F.N.
Owen, C.P. O’Dea, M. Inoue, and J. Eilek). Original versions of these
figures appeared in Fannjiang (2011).

YOPP is based on the mean distance between antennas, and this
mean distance grows irrelevantly small with smaller apertures.
Far greater perturbation, perhaps to an extent that the determin-
istic “Y” framework is unrecognizable, is probably needed to
compensate.

5.2. Extended source reconstructions

OMP reconstructions are run of the radio image of 3C75 in
the under-resolved case, setting AR

λ = 0.75. The advantages
of the URA are even more extraordinary here, as the accuracy
of its reconstruction appears unaffected from the well-resolved
case. Predictably, the other two arrays give much weaker perfor-
mances: the “Y” array barely confirms the galaxy’s existence,
while the NRA’s reconstruction (using an SD that emulates a
URA in the well-resolved case) is marred by artifacts similar to
the checkerboard pattern seen in the well-resolved case.

6. The BDCT

Here the basis matrix Ψ is the BDCT matrix for 4 × 4-pixel
transform blocks. Unpublished results with 2 × 2- and 8 ×
8-pixel blocks show the same relationships between the arrays.

6.1. Array comparisons through mutual coherence

We calculate the MC of matricesΦ that give measurements for a
32 × 32-pixel object. Figure 10 reveals some of the same trends
as in the pixel basis: the URA provides the most incoherent mea-
surement matrices, while the “Y” array gives a much higher MC.
The BDCT also seems to have amplified the effects of pattern-
ing, as shown in the “Y” array’s erratic MC curve. However,
the NRAs have become more congruent with the URA, in that
they decay in a like manner as the number of antennas increases.
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Fig. 10. Mutual coherence of measurement matrices as the number of
antennas in the array increases, using the BDCT matrix as the basis
matrix Ψ. For the randomized arrays (URA, NRA), the MC plotted is
the mean of 50 independent instances of the array.

In theory, CS reconstructions could thus be improved in a pre-
dictable fashion simply by adding more antennas to either array.
This similarity allows an NRA with SD ≥ 0.28 to emulate the
URA for arbitrary numbers of antennas, not just up to 27 as in
the pixel basis.

Though the basic trend of higher SD resulting in lower MC
is also exhibited, what is startling is how OMP reconstructions
with the BDCT fail to correspond to the MC results, as seen in
the next subsection.

6.2. Reconstructing extended sources

The OMP extended-source reconstructions in Figs. 11–14 devi-
ate from the MC results in intriguing ways. Most notably, the
URA never provides the most accurate reconstruction of the ob-
ject, despite providing the most incoherent measurement matri-
ces. The URA’s reconstructions in Figs. 11b–14b introduce spu-
rious artifacts to the backgrounds of the galaxies, and also distort
structures within the galaxies. The red- and yellow-colored inter-
nal structures of Fig. 11a are broadened in Fig. 11b; the central
dark blue region of Fig. 12a is highly distorted in Fig. 12b; and
the large red structure on the right-hand side of Fig. 13a is much
diminished in Fig. 13b. In all cases, an NRA with an SD as low
as 0.14 provides the most faithful reconstruction. Reinforcing
the contradiction, the measurement matrix produced with this
NRA has an MC of 0.28 – more than twice the MC of the URA,
0.12. In the pixel basis the NRA can also emulate a URA, but
only when the SD is great enough that the MC of the two arrays
is also comparable. Reconstructions (not shown) of the sources
NGC 2403, M33, and 3C31 were also run, and demonstrate the
same surprising trend: the NRA clearly provides the most faith-
ful reconstructions with the smallest RE, despite giving much
higher MC than the URA.

Similarly, despite giving the most coherent measurement
matrices by far (see Fig. 10), the “Y” array provides reconstruc-
tions with smaller RE than the URA in Figs. 12d and 13d. In
Fig. 12d, its reconstruction preserves the central dark blue re-
gion of Cassiopeia A much more accurately than the URA, and
in Fig. 13d it preserves the large red structure on the right-hand
side of M87 that the URA’s reconstruction fails to recover. The
“Y” array does suffer from an idiosyncratic distribution of error
known as the blocking effect: when too few BDCT components
are recovered by OMP, the missing components (typically high-
frequency components) in each block create breaks in features
that should span the blocks continuously. Despite the blocking

A73, page 8 of 11

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321079&pdf_id=9
http://images.nrao.edu/29
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321079&pdf_id=10


C. Fannjiang: Arrays for radio interferometry by compressed sensing

(a)

(c) (d)

(b)

Fig. 11. OMP reconstructions of the object a), radio emission from the
Crab Nebula, using the BDCT as the sparsifying basis. The original ob-
ject is 120 × 120 pixels and measurements are simulated from 100 an-
tennas. Reconstructions are run with measurements from a URA in b)
(RE = 0.0633), an NRA of 0.14 in c) (RE = 0.0378), and the VLA-based
“Y” array in d) (RE = 0.0752). All pixel brightness values in the ob-
ject and reconstructions are normalized by the object’s maximum pixel
brightness value, to lie on [0, 1]. Image a) can be found at http://
images.nrao.edu/393 (courtesy of NRAO/AUI and M. Bietenholz).

effect, however, even when the “Y” array does not outperform
the URA (Figs. 11d and 14d) its RE is surprisingly comparable
given that it produces far more coherent measurement matrices
(RE = 0.0752 vs. the URA’s RE = 0.0633 in Fig. 11, and RE =
0.0137 vs. the URA’s RE = 0.0082 in Fig. 14).

This discrepancy between the MC results and the extended
source reconstructions has several possible roots – first, it is im-
portant to note that the calculation of MC is only mathematically
synonymous to the calculation of the array’s peak side-lobe in
the pixel basis. With the BDCT (or any other transform) incor-
porated into the measurement matrix, the physical analogy to the
peak side-lobe breaks down and the MC cannot be interpreted in
the same way. Though it is still theoretically relevant to array
optimization through Eq. (4), it no longer has any direct phys-
ical meaning to the problem. Many CS sampling studies have
focused solely on MC or the RIP – just as many array stud-
ies have focused solely on side-lobes – but such indicators may
have different implications depending on the sparsifying basis.
Though the suitability of sparsifying bases for image reconstruc-
tion in radio interferometry was noted as early as in (Starck et al.
1994), we cannot fully appreciate CS in the field until we also
understand how different sparse representations will affect array
optimization.

We also note that, unlike in the pixel basis, the random per-
turbation of the YOPP array (not shown) does not significantly
decrease the RE or blocking effect of the “Y” array’s recon-
structions (unless the perturbation is so severe the original “Y”
framework is no longer recognizable). This is likely because the
YOPP was designed to emulate a URA, the superior array for

(a) (b)

(d)(c)

Fig. 12. OMP reconstructions of the object a), radio emission from
Cassiopeia A, using the BDCT as the sparsifying basis. The original
object is 200 × 200 pixels and measurements are simulated from 180 an-
tennas. Reconstructions are run with measurements from a URA in b)
(0.0434), an NRA of 0.14 in c) (RE = 0.0033), and the VLA-based “Y”
array in d) (RE = 0.0119). All pixel brightness values in the object and
reconstructions are normalized by the object’s maximum pixel bright-
ness value, to lie on [0, 1]. Image a) can be found at http://images.
nrao.edu/395 (courtesy of NRAO/AUI).

the pixel basis, rather than an NRA, the superior array for the
BDCT: the largest baselines were perturbed, corresponding to
the URA’s higher proportion of larger baselines compared to the
NRA. Developing a different modification scheme for the “Y”
array with the BDCT, such that it better emulates an NRA, is
therefore of interest.

7. Conclusions

In the pixel basis, we showed that the URA optimizes the perfor-
mance indicator MC and sets the benchmark in OMP reconstruc-
tions of both point and extended sources. Though this contra-
dicts the general agreement on centrally condensed arrays in the
well-sampled case, it is linked to previous results that arrays with
small numbers of antennas should aim for a more uniform base-
line distribution (Boone 2002; Holdaway 1997; Woody 2001a)
so that the near-in side-lobes do not overpower the far side-lobes.
The URA also showed promise in allowing for super-resolution
in CS recovery, whereas the performance of all other tested ar-
rays decayed rapidly in the under-resolved case.

When we used the BDCT to amplify object sparsity, despite
giving significantly higher MC an NRA outperforms the URA
to provide the most faithful reconstructions of extended sources.
This conveniently coincides with the preference for centrally
condensed arrays in the well-sampled case. Such results also
reveal the nearsightedness of solely analyzing MC, as is often
done in optimizing sample distributions for CS, since this in-
dicator does not preserve its physical meaning among different
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(a)

(d)

(b)

(c)

Fig. 13. OMP reconstructions of the object a), radio emission from
M87, using the BDCT as the sparsifying basis. The original object is
120 × 120 pixels and measurements are simulated from 100 antennas.
Reconstructions are run with measurements from a URA in b) (RE =
0.2876), an NRA of 0.14 in c) (RE = 0.002), and the VLA-based “Y”
array in d) (RE = 0.009). All pixel brightness values in the object and
reconstructions are normalized by the object’s maximum pixel bright-
ness value, to lie on [0, 1]. Image a) can be found at http://images.
nrao.edu/57 (courtesy of NRAO/AUI and F.N. Owen, J.A. Eilek, and
N.E. Kassim).

sparse representations. An array’s MC is analogous to its peak
side-lobe in the pixel and other spike-like bases, but cannot be
interpreted the same way in other bases.

We also highlighted the YOPP array as a model for en-
hancing the VLA’s “Y” configuration with a deceptively trivial
amount of randomization, as it emulates a URA in reconstructing
both point and extended sources with the pixel basis. The prin-
ciple of slight perturbation could also apply to other patterned
arrays, making them far more conducive to CS while preserving
their practicality. This aligns with the early fundamental obser-
vation in Lo (1964) that a significantly lower number of ran-
domly spaced sensors are needed than regularly spaced sensors
to achieve the same low level of side-lobes. In the context of
CS, when we are constrained by a highly insufficient number of
sensors, this principle becomes indispensable.

Our results have general implications and serve as an intro-
ductory look into arrays for CS in radio interferometry. Various
factors can be studied further, in particular the sparsifying ba-
sis, which is critical to any application of CS. That sparsifying
bases can incorporate redundancy make them far more power-
ful than the pixel basis at representing natural images sparsely,
and finding the optimal sparse representation for astronomical
objects will clearly improve CS performance. Array design with
respect to wavelet transforms and frames, such as the isotropic
undecimated wavelet transform (Starck et al. 2006), is of inter-
est: unlike the BDCT, such multiresolution approaches avoid the
issue of optimizing a block size, which depends on the scale
of the structures being imaged. The CS recovery algorithm is

(a)

(c)

(b)

(d)

Fig. 14. OMP reconstructions of the object a), radio emission from
3C58, using the BDCT as the sparsifying basis. The original object is
160 × 160 pixels and measurements are simulated from 100 antennas.
Reconstructions are run with measurements from a URA in b) (RE=
0.0082), an NRA of 0.14 in c) (RE = 0.0028), and the VLA-based
“Y” array in d) (RE = 0.0137). All pixel brightness values in the ob-
ject and reconstructions are normalized by the object’s maximum pixel
brightness value, to lie on [0, 1]. Image a) can be found at http://
images.nrao.edu/529 (courtesy of NRAO/AUI and M. Bietenholz,
York University).

also a key variable. OMP was chosen here because of its paral-
lels to CLEAN, as well as its superior computational efficiency
compared to the optimization-based BP and LASSO, which is
critical in dealing with large data. However, these optimization
approaches, as well as adaptations of the basic OMP framework,
may respond to arrays differently. Also important is incorporat-
ing Earth-rotation aperture synthesis, and running reconstruc-
tions on real rather than simulated data. As we look to deal with
new floods of data from massive arrays, including the ALMA
and the SKA, addressing these factors in array design for CS
will become increasingly critical.
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