
METHODS & TECHNIQUES

Augmenting biologging with supervised machine learning to study
in situ behavior of the medusa Chrysaora fuscescens
Clara Fannjiang1,2,*, T. Aran Mooney3, Seth Cones3, David Mann4, K. Alex Shorter5 and Kakani Katija1

ABSTRACT
Zooplankton play critical roles in marine ecosystems, yet their fine-
scale behavior remains poorly understood because of the difficulty
in studying individuals in situ. Here, we combine biologging with
supervised machine learning (ML) to propose a pipeline for studying
in situ behavior of larger zooplankton such as jellyfish. We deployed
the ITAG, a biologging package with high-resolution motion sensors
designed for soft-bodied invertebrates, on eight Chrysaora
fuscescens in Monterey Bay, using the tether method for retrieval.
By analyzing simultaneous video footage of the tagged jellyfish, we
developed ML methods to: (1) identify periods of tag data corrupted
by the tether method, which may have compromised prior research
findings, and (2) classify jellyfish behaviors. Our tools yield
characterizations of fine-scale jellyfish activity and orientation over
long durations, and we conclude that it is essential to develop
behavioral classifiers on in situ rather than laboratory data.

KEY WORDS: Invertebrate, Accelerometry, Telemetry, Zooplankton,
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INTRODUCTION
As oceans are altered by rising temperatures, acidification and
other consequences of anthropogenic activity, understanding the
behavioral patterns and responses of marine animals is required for
effective stewardship. Researchers have made great strides in
investigating marine megafauna behavior related to long-distance
migrations (Block et al., 2011; Rasmussen et al., 2007; Sequeira
et al., 2018) and foraging strategies (Sims et al., 2008; Weise et al.,
2010). However, the behavior of more numerous, higher total-
biomass, lower trophic-level animals such as zooplankton is much
less well understood. Early attempts to investigate in situ behavior of
zooplankton such as jellyfish relied on scuba divers following
animals with hand-held video cameras (Colin and Costello, 2002;
Costello et al., 1998) and later with remotely operated vehicles
(ROVs; Kaartvedt et al., 2015; Purcell, 2009; Rife and Rock, 2003).
Acoustic methods have also been used to describe large-scale
movement patterns of jellyfish (Båmstedt et al., 2003; Kaartvedt

et al., 2007; Klevjer et al., 2009), although these methods can be
resolution-limited.

A promising alternative is biologging, where electronic
transmitters or loggers with environmental and motion sensors are
affixed to organisms (Kooyman, 2004; Rutz and Hays, 2009).
Biologging has enabled a diverse array of marine vertebrate studies
(Block et al., 2011; Goldbogen et al., 2006; Johnson and Tyack,
2003), while several technological challenges have hindered its
widespread use to study gelatinous invertebrates such as jellyfish.
Their sensitivity to drag induces constraints on tag size, shape and
buoyancy (Fossette et al., 2016; Mills, 1984; Mooney et al., 2015),
which, when coupled with bandlimited transmission capabilities,
often restricts sensor payloads to low-resolution depth or location
pingers (Honda et al., 2009; Moriarty et al., 2012; Seymour et al.,
2004). As a result, very few studies have successfully deployed
high-resolution motion sensors such as accelerometers on jellyfish
in situ (Fossette et al., 2015), and these studies adopted the ‘tether
method’ for retrieval (Fossette et al., 2016; Hays et al., 2008), where
the tag is tethered to a surface float transmitting location. As
tethering can restrict movement, it is unknown whether data
collected in this manner are representative of natural behavior.
Furthermore, without simultaneous observation of the tagged
animal, interpretation of biologging data can be easily biased
(Brown et al., 2013; Jeantet et al., 2018).

Recently, techniques from supervised machine learning (ML),
which automatically fit or ‘learn’ patterns that optimally distinguish
categories, have been successfully used to classify behaviors in
various marine vertebrates (Brewster et al., 2018; Jeantet et al.,
2018; Ladds et al., 2016). However, few studies develop their
methods on ground-truthed in situ data owing to the difficulty of
recording sustained observations of wild marine animals (Carroll
et al., 2014). It is unknown whether classifiers developed on data
from captive, controlled or laboratory conditions are equally
effective on data from natural environments (Carroll et al., 2014),
an example of a broader problem in ML known as domain
adaptation (Pan and Yang, 2010; Zhang et al., 2013).

In this study, we demonstrate how to investigate fine-scale
zooplankton behavior in situ by combining biologging with
supervised ML methods. We study the movements of the
scyphomedusa Chrysaora fuscescens in Monterey Bay, CA, USA,
using the ITAG, a biologging tag equipped with high-resolution
motion sensors and engineered specifically for soft-bodied
invertebrates (Mooney et al., 2015). We use the tether method for
retrieval and simultaneously record video footage of the tagged
animals. We develop classifiers using the resulting data to: (1) detect
when the tether method influences jellyfish behavior, and (2)
distinguish swimming from drifting. We provide principled
estimates of the classifier error characteristics, which allow us to
remove tether-influenced data and estimate the fine-scale in situ
orientation and swimming activity of C. fuscescens individuals for up
to 10 h. We also investigate how classifiers trained on laboratory dataReceived 1 June 2019; Accepted 29 July 2019
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perform on in situ data. By combining a highly specialized tag with
supervised ML, our approach is the first complete pipeline for
acquiring and interpreting high-resolutionmotion data from individual
jellyfish or other zooplankton in situ.

MATERIALS AND METHODS
Code and Jupyter Notebooks demonstrating how to reproduce our
classifiers are available at https://bitbucket.org/mbari/jellymove.

Laboratory deployments
Laboratory investigations of jellyfish tagging were conducted at the
Monterey Bay Aquarium Research Institute (MBARI) in Moss
Landing, CA in the spring of 2018. Four jellyfish (Chrysaora
fuscescens Brandt 1835) with bell diameters ranging from 16 to
25 cm were collected in Monterey Bay from RV Paragon (California
Department of Fish and Wildlife permit SC-13337) and kept in
plastic bags filled with unfiltered seawater. Within 4 h of collection,
animals were transported into large holding tanks in a 5°C cold room
inMBARI’s seawater lab. Experiments were conducted in a 275,000
gallon (1.25 million liter) test tank with dimensions of 13 m
(L)×10 m (W)×10 m (D). Animals were transported from the
seawater lab in plastic bags and placed in the test tank to acclimate
for at least 1 hour prior to tagging trials. After acclimation, a neutrally
buoyant bio-logging tag (ITAG v0.4; Mooney et al., 2015) was
prepared for attachment. The ITAG (6.3 cm×2.9 cm×1.6 cm, air
weight 30 g) is equipped with a triaxial accelerometer, gyroscope
and magnetometer synchronously sampling at a rate of 100 Hz, and
pressure, temperature and light sensors sampling at 1 Hz. The tag
was attached to the animal’s aboral surface using veterinary-grade

tissue adhesive (3M Vetbond, Maplewood, Minnesota, USA),
following the ‘glue method’ (Fossette et al., 2016). Care was taken
to center the attachment site on the bell apex between the four
gonads, so that the tag axis conventions aligned with the jellyfish,
and the animal’s radial symmetry was not disrupted (Fig. 1H). The
entire attachment procedure took no longer than 2 min.

To replicate the in situ recovery strategy, the tags were attached by
6 m of monofilament line (20 lb/∼9 kg test) to a suspended walkway
about 1 m above the tank surface (the tether length was set to
prevent the animal from getting tangled with metal bars on the walls
of the test tank). Simultaneous lateral-view video footage of the
tagged jellyfish was collected with a HERO5 Black GoPro (GoPro,
Inc., San Mateo, CA, USA) mounted onto a BlueROV2 (Blue
Robotics, Torrance, CA, USA). Footage was synchronized with the
tag data by sharply tapping the tag five times in front of the GoPro
prior to attachment.

Field deployments
We deployed ITAGs on 8C. fuscescens in Monterey Bay, CA in late
spring of 2018, and collected in situ recordings with durations
between 54 min and 10 h. The bell diameters of these animals were
between 20 and 28 cm. Fig. 1A–G depict the main phases of the
deployment protocol. Each animal was first spotted from aboard the
RV Paragon, which then maneuvered next to the animal so it could
be gently captured and brought aboard using a plastic bucket.
Captured jellyfish were then transferred into individual 27 gallon
(∼125 l) plastic holding tubs filled with seawater (Fig. 1A), and care
was taken to not introduce air bubbles under their bells. To recover
tags at the end of the deployment, we used the ‘tether method’

 A  B  C  D
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Fig. 1. In situ protocol to collect simultaneous biologging data and video footage of Chrysaora fuscescens for supervised machine learning. Protocol
consisted of transferring collected jellyfish to staging tub (A), drying the attachment site with absorbent towels (B), gently affixing tethered ITAG with VetBond (C),
deploying SPOT drifter and drogue (D), deploying BlueROV with mounted GoPro (E), and gently releasing tagged jellyfish and tracking it with the BlueROV (F,G).
(H) Definitions for positive x, y and z tag axes, and positive heading, roll and pitch angle.
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(Fossette et al., 2016): tags were tethered by 30 m of monofilament
line to the bottom of a drogue, which was attached by dock line to a
surface drifter. A fishing swivel was placed at the midpoint of the
tether, as well as immediately below its attachment to the drogue, to
prevent tether torsion from affecting the animal. The surface drifter
consisted of PVC housing for a SPOT GPS tracking device (SPOT
LLC, Milpitas, CA, USA), and a PVC pipe chamber containing
batteries and ballasting material. The SPOTwas configured to report
its coordinates once every 15–20 min via email. The tethered tags
were then affixed to jellyfish while in the holding tubs, following the
aforementioned glue method also used for laboratory deployments
(Fig. 1B,C). In order, the drogued drifter, ROV and tagged jellyfish
were then released (Fig. 1D–F, respectively). The drogue was
centered at a depth down to 9 m (see Table S1), and the jellyfish
could therefore swim freely down to a depth of 30–39 m. We then
piloted the ROV to track and record video footage of the tagged
animal, until losing sight of it because of water turbidity and/or
turbulence (see Movie 1 for example footage). Once visual contact
with the tagged animal was lost, the ROV was recovered, and the
tagged animals tethered to the drogued drifters were left behind.
Tags were retrieved the morning after deployment. The boat was

navigated to the most recent coordinates reported by the SPOT, and
once the drifter and drogue were located, the drifter, drogue and tag
(with or without the animal still attached) were recovered. Data from
the tag were then brought back to shore for analysis.

Orientation estimation
We defined axes conventions appropriate for the typical jellyfish
swimming position (see Fig. 1H). Since we have control over the tag
attachment site, we can ensure that the tag x-axis (surge direction) is
orthogonal to the jellyfish bell at the apex, so no further data
processing is necessary to align the tag and jellyfish axes.
In order to compute orientation from the accelerometer and

magnetometer signals, we first used a finite impulse response filter
to smooth the accelerometer and magnetometer data (Sato et al.,
2003). The selected filter cut-off frequency of 0.2 Hz was within the
typical range (0.25–0.50; Martín López et al., 2016) of the pulse
frequency reported forChrysaora (Matanoski et al., 2001). Filtering
the accelerometer data separates the signal due to gravity (or static
acceleration) from high-frequency animal-generated forces (or
dynamic acceleration, DA; Wilson et al., 2006), which we later
processed and featurized for behavioral classification. The resulting
static acceleration was then combined with the smoothed
magnetometer data to calculate orientation (i.e. Euler angles of
heading, pitch, and roll) at every point in time, according to
trigonometric relationships (Johnson and Tyack, 2003). Based on
our axes conventions in Fig. 1A, heading refers to compass bearing
from true north, positive pitch means the jellyfish bell apex is tilted
upward with respect to the horizon, and positive roll means the
jellyfish bell is rotating around its apex counterclockwise, when
viewed facing the bell.

Annotation of video data
Laboratory and in situ video footage was manually annotated for
jellyfish behavior and tether influence. Each second of footage was
labeled according to whether the jellyfish was swimming or drifting
(not actively pulsing its bell), and whether the tether was slack (i.e.
when the animal was uninfluenced by tether tension) or taut (i.e.
when the animal was influenced by tether tension). For in situ
deployments, if the tether could not be clearly seen or was out of
view because of turbidity and/or viewing angle (e.g. facing the
subumbrella), the state of the tether was annotated as unknown.

Similarly, if the jellyfish behavior could not be distinguished
because of lighting or turbidity, the behavior was annotated as
unknown. Any segments of footage where either the tether state or
jellyfish behavior were unknown were excluded from training data
for the methods we describe below.

Jellyfish behavior classification
When using the tether method as a tag retrieval strategy, prolonged
deviations between the trajectories of the jellyfish and its tethered
drifter can result in the tether pulling on the tag. These forces leave
measurable signatures in the motion sensor data, which are distinct
from the signals generated by the jellyfish’s natural behavior. Our
goal was to develop supervised ML methods to: (1) detect and
remove segments of data corrupted by tether influence (tether
influence classification), and (2) distinguish swimming from
drifting on the remaining data (activity classification). In the
following sections, we describe how these methods were developed.

Data preprocessing
In situ data were first split into annotated and unannotated pools.
Annotated data were processed and featurized as described below,
then set aside for model training and evaluation. Unannotated data
were similarly processed and featurized, and then set aside for
classification by the trained models. Laboratory data were
completely annotated, since we were able to capture video footage
of the entire deployment.

We used the following procedure to assemble data samples for
each of the four categories annotated as described above: tether-
influenced, uninfluenced, swimming and drifting. Upon visual
inspection, the DA of every deployment displayed a nearly constant
periodic nature, consistent with the nearly constant bell pulsing
observed in both laboratory and in situ video footage. We therefore
computed the discrete cosine transform of the DA and took the
frequency with the maximum absolute coefficient as the
representative pulse frequency (RPF) for each deployment.

For each category, we extracted all segments of motion sensor
data whose corresponding video footage was annotated with that
category. Each segment, which consisted of 10 channels of data
(pressure sensor and triaxial accelerometer, gyroscope and
magnetometer) was then split into consecutive, non-overlapping
windows with a duration equal to the representative swimming
cycle length (the reciprocal of the RPF). Segments shorter than this
duration and trailing windows at the ends of segments shorter than
this duration, were discarded from classification and analysis. Each
of these windows, which we refer to as periods, was then featurized.
Note that the period duration is different for each deployment, to
account for the pulse frequency of each animal.

Featurization
For each period, we generated a total of 45 candidate features from
the accelerometer and gyroscope. During training, we used a feature
selection method to select a subset with the greatest predictive
power, as described below. We computed various features of partial
dynamic body acceleration (PDBA), which is the sum of the
absolute values of the y- and z-axes of DA. PDBA is a variant of
overall dynamic body acceleration (ODBA; Wilson et al., 2006),
which is used extensively as a proxy for energetic input (Halsey
et al., 2009; Wilson et al., 2006; Gleiss et al., 2011). By computing
both PDBA and the absolute value of the x-axis of DA (DAx), we
can separate energy expenditure in the direction of jellyfish
propulsion from movements in the orthogonal plane (i.e. the x-
axis from the y–z plane in Fig. 1H). To account for variation in
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propulsive force between individual jellyfish, we divided the PDBA
and DAx by their respective averages over the deployment for each
jellyfish. Analogous to PDBA and DAx, we also considered the
norm of the y- and z-axes of the gyroscope data (or partial angular
velocity, PAV) and the absolute value of the x-axis (AVx).
Accelerometer-based features included the maxima, means and

standard deviations of DAx, PDBA, the absolute value of the x-axis
of jerk, and the norm of the y- and z-axes of jerk. Spectral features
were the sparsities of DAx and PDBA spectra (the absolute value of
the Fourier transform), as measured by the Gini index (Hurley and
Rickard, 2009; Zonoobi et al., 2011) and the spectral energies of
DAx and PDBA in 0.2–1.0 Hz (roughly the typical range of pulse
frequencies) and 1–8 Hz. We also included the spectral energy
of DAx over 8 Hz but excluded it for PDBA because the two were
too highly correlated, thereby leading to numerically unstable
covariance matrix inversions in our model. The remaining features
were the number of peaks in the DAx and PDBA, as identified by a
peak-detection method (Duarte, 2013), the correlation between the
y- and z-axes of DA, and the average of the correlations between the
x- and y-axes and x- and z-axes of DA. The gyroscope-based
features were completely analogous to the accelerometer-based
features, substituting AVx, PAV and angular acceleration for DAx,
PDBA and jerk, respectively, except excluding spectral energy of
AVx over 8 Hz. For behavioral analysis, we also computed
normalized ODBA by dividing the ODBA signal by the average
ODBA over the deployment, to accommodate differences in
propulsive strength between individual jellyfish. However, it was
not included as a classification feature owing to redundancy with
PDBA and DAx.

Training data
The video footage showed that the nature of tether influence was
fundamentally different between in situ and laboratory deployments.
In the test tank, the jellyfish simply turned slightly whenever it
reached the end of the tether, whereas tether influence in situ took the
form of sharp yanking or prolonged dragging on the jellyfish. Since
our end goal was to detect tether influence in situ, and the nature of in
situ tether influencewas not replicated in laboratory footage, we only
trained and evaluated the tether influence classifier on in situ data.
For training the tether-influence classifier, the annotated in situ

data yielded 325 s of tether-influenced behavior and 2825 s of
uninfluenced behavior (or 83 and 1245 periods, respectively) across
all deployments. For training the activity classifier, the annotated
laboratory data yielded 366 s (68 periods) and 9201 s (3069 periods)
of uninfluenced drifting and uninfluenced swimming behavior,
respectively, and the annotated in situ data yielded 79 s (17 periods)
and 2740 s (1228 periods) of uninfluenced drifting and uninfluenced
swimming behavior, respectively. Since only 17 periods of
uninfluenced in situ drifting were observed, we trained the activity
classifier on the combined in situ and laboratory data (85 and 4297
periods of drifting and swimming, respectively) to sufficiently
capture drifting behavior. To assess the value of incorporating in situ
data for training, we also trained the classifier solely on the
laboratory data.

Classification methods
Quadratic discriminant analysis
For both tether influence and activity classification, we trained a
supervised ML method known as quadratic discriminant analysis
(QDA; Hastie et al., 2009), a generalization of the classical linear
discriminant analysis method introduced by Fisher (Fisher, 1936;
Hastie et al., 2009). QDAmodels each category in feature space as a

multivariate normal distribution with an individual mean and
individual covariance matrix. That is, let x∈Rp denote the feature
vector, where p is the number of features, and let y∈{0, 1} denote
the categorical label (e.g. swimming versus drifting for the activity
classifier). For convention, we let category 1 refer to the minority
(less frequent) category, i.e. uninfluenced for tether-influence
classification and drifting for activity classification. The data are
then modeled as:

y � BernoulliðaÞ; ð1Þ
x j y ¼ 0 � Nðm0;S0Þ; ð2Þ
x j y ¼ 1 � Nðm1;S1Þ; ð3Þ

where μ0, μ1∈Rp and Σ0, Σ1∈Rp×p are the mean and covariance
matrix parameters, respectively, and α∈[0, 1] is the probability of
category 1 occurring, known as the class prior. We fit the model by
computing the maximum likelihood estimates for μ0, μ1, Σ0, Σ1 and
α, which are simply the sample means and sample covariances of
the categories, and the proportion of category 1 in the training set.
Under this model, QDA then classifies a new instance to the
category ŷ that maximizes the conditional probability pðŷ j xÞ (the
category that is most likely given the features), which can be
accessed via Bayes’ rule. As the name implies, the resulting decision
boundaries in feature space are quadratic curves. Owing to the
simplicity of the model and closed-form nature of the maximum
likelihood estimates, QDA is both easy to interpret and fast to train.

Feature selection
There is often a large number of candidate features one can consider
for a classifier. Principled methods for choosing an optimal subset
of these features can help produce classifiers that perform better
(due to the removal of noisy, irrelevant or redundant features), are
faster and cheaper to use (since fewer feature need to be measured
and processed) and are more interpretable (Dash and Liu, 1997;
Guyon and Elisseeff, 2003; Liu and Motoda, 1998). Under the
broader umbrella of model selection, feature selection encourages
finding the simplest model that explains the data, a principle that is
critical for performance generalization (Hastie et al., 2009;MacKay,
2003). We first computed the list of 45 candidate features described
above from accelerometer and gyroscope data. As part of training,
we used a popular greedy heuristic known as sequential forward
selection (SFS; Whitney, 1971), which starts with an empty subset
of features and iteratively adds the next feature whose inclusion to
the existing subset improves some evaluation metric the most.
Despite its simplicity, SFS has been shown to match or outperform
more complex search methods by being less prone to overfitting
(Reunanen, 2003).

Metric for feature selection
In choosing an evaluation metric for SFS, we observed that our
video annotations showed highly skewed category distributions for
both classification tasks: tether-influenced periods and drifting were
observed far less often than uninfluenced periods and swimming,
respectively. In this case, the common metric of accuracy loses
meaning, since the accuracy of a simple majority decision rule (i.e.
always predict the majority categories: influenced and swimming) is
high even though (1) the features are not considered and (2) all
instances of the minority category are misclassified. Regardless of
category imbalance, the evaluation metric should reflect how well a
classifier extracts discriminating information from the features, and
should account for the balance of false positives and false negatives
on the minority category.
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In particular, consider precision and recall on the minority
category, defined as:

Precision ¼ TP

TPþ FP
, ð4Þ

Recall ¼ TP

TPþ FN
, ð5Þ

where TP denotes the number of true positives, or minority category
periods correctly classified as the minority category; FP denotes the
number of false positives, or majority category periods incorrectly
classified as the minority category; and FN denotes the number of
false negatives, or minority category periods incorrectly classified as
the majority category. Given a trained probabilistic model of the
data, such as the one posed by QDA, the decision rule to classify an
instance as category 1 can be formulated in terms of a threshold on
the probability p(y=1 | x). Varying this threshold exposes an inherent
trade-off between precision and recall: a decision rule with a high
threshold, which only selects the category given overwhelmingly
high evidence, tends to achieve higher precision at the cost of lower
recall. A decision rule with a lenient threshold, which liberally
selects the category given only mild evidence, tends to achieve
higher recall at the cost of lower precision. This trade-off is captured
by the curve in precision–recall space (PR curve) generated by
decreasing the decision threshold from 1 to 0, which is often used to
characterize classifier performance on tasks with skewed category
distributions (Bunescu et al., 2005; Davis and Goadrich, 2006;
Fawcett, 2006; Manning and Schütze, 1999). The PR curve allows
the analyst to choose an appropriate decision threshold, depending
on the relative importance of precision and recall for the task at hand
(Manning and Schütze, 1999).
We use the area under this curve (AUPRC) as the metric for

feature selection, which provides a summary of performance across
all possible thresholds (Boyd et al., 2013; Richardson and
Domingos, 2006). The AUPRC ranges from 0 to 1, where an
ideal classifier that suffers no trade-off has an AUPRC of 1, and a
classifier no better than random guessing has an expected AUPRC
of the proportion of the category in the dataset. During feature
selection, we terminated SFS when the inclusion of the next feature
failed to improve the AUPRC by at least 0.02.

Classifier evaluation
Unbiased evaluation of a classifier’s performance on unseen data
requires complete separation of the data used in the training and
evaluation phases. The standard way to evaluate classifier
performance is with k-fold cross-validation (CV; Hastie et al.,
2009; Kohavi, 1995), in which the annotated dataset is split equally
into k parts. For each part, a classifier is trained on the remaining
k−1 parts (the training set) and evaluated on the excluded part (the
test set) using some evaluation metric, and the average of the
resulting k evaluation scores (the CV score) is used as an estimate of
the method’s evaluation score on unseen data. Since wewant to take
full advantage of our annotated dataset for training, a final classifier
can then be trained on the complete dataset and deployed for future
predictions (Cawley and Talbot, 2010; Varma and Simon, 2006).
Note that during evaluation, the training phase must include all

aspects of model selection, including feature selection and choosing
hyperparameter values. However, these aspects are sometimes
incorrectly treated as external to the training process: performing
hyperparameter and/or feature selection on the complete dataset
prior to CV can result in dramatic inflations of the CV score
(Ambroise and McLachlan, 2002; Cawley and Talbot, 2010;

Smialowski et al., 2010; Varma and Simon, 2006). To remove
this selection bias, for each of the k iterations of CV, we performed
feature selection solely on the training set using an ‘inner’ CV
(Ambroise and McLachlan, 2002; Varma and Simon, 2006). That
is, the training set was itself split evenly into k parts, and for each
iteration of SFS, each candidate feature was evaluated by: (1) adding
it to the current feature subset, (2) training QDAwith those features
and evaluating it on the k pairs of inner training and test sets, and (3)
averaging those k evaluation scores. The feature with the best inner
CV score is then selected. After SFS has terminated, we use the
finalized feature subset to train and evaluate QDA on the outer CV
training and test set. For both the inner and outer CV, we take k=5.

After the outer CV is complete, we report the mean±s.e. of the k
AUPRC values. We then use the average of the k PR curves to
choose a decision threshold (Fawcett, 2006). For the purposes of
demonstrating our methods, we prioritize precision and recall
equally, and simply choose the threshold value out of {0.1, 0.2,…,
0.9} that yields precision and recall values closest to each other. We
call this the equal error rate threshold (EER; Duda et al., 2000) and
report the CV precision, recall and accuracy for this classifier. For
future studies that prioritize either precision or recall over the other,
the researcher can use the average PR curve to pick a threshold that
achieves the desired trade-off (Manning and Schütze, 1999; Duda
et al., 2000; Fawcett, 2006).

Activity classifier baselines
To see if our featurization and feature selection approach improved
activity classification beyond simpler alternatives, we trained and
evaluated two baseline classifiers. The first baseline, which we refer
to as ODBA thresholding, simply classifies a period as swimming if
the mean normalized OBDA is above some decision threshold.
Since ODBA is often used as a proxy for energetic expenditure,
intuition would suggest it should be sufficient for discriminating
swimming from drifting in a noiseless scenario. The second
baseline follows our method but only uses accelerometry features,
excluding features from the gyroscope data.

In situ behavior prediction
After training and evaluating the classifiers, we used them to predict
tether influence and activity on the unannotated in situ data. After
removing any periods classified as tether-influenced, we then
classified each remaining uninfluenced period as swimming or
drifting. These classifications provide estimates of: (1) how often
the tether method interferes with the natural movements of jellyfish,
and (2) how much time jellyfish spend swimming versus drifting
in situ over long durations.

Orientation change
To assess change in orientation during swimming, we computed the
difference in heading, pitch and roll angles between and start and
end of each period. We converted these differences into a non-
negative total angle of rotation (Diebel, 2006), which we refer to as
orientation change over a period. We also used circular mean and
circular s.d. to compute the means±s.d. of heading, pitch and roll
angles over periods. To avoid ill-defined heading and roll values
due to gimbal lock, we excluded periods where the absolute pitch
angle exceeded 70 deg (this removed 0.7% of total laboratory and
in situ periods).

Statistical tests
We ran several statistical tests on the annotated data to investigate
potential distinctions between laboratory and in situ behavior, and
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between tether-influenced and uninfluenced behavior. For the
following four tests, we used the nonparametric Mann–Whitney U-
test to avoid any distributional assumptions on the quantities of
interest, and because we expected to have considerably large sample
sizes (each period constitutes only a few seconds of data). We
pooled tether-influenced and uninfluenced periods across the in situ
deployments, and tested whether either group tends to exhibit (1)
greater normalized ODBA or (2) greater orientation change than the
other. We also tested these two hypotheses between laboratory and
in situ data, by pooling together uninfluenced periods across the
laboratory deployments and across the in situ deployments.

RESULTS AND DISCUSSION
Laboratory and in situ deployments
Fig. 2A shows drifter trajectories and timestamps for the 8 in situ
deployments in Monterey Bay over three separate days (see
Table S1 for laboratory and in situ deployment details). Video
footage was successfully captured for 7 of these deployments, and
annotated for activity and tether influence as summarized in
Table S2 (see Movie 1 for examples). Drifting behavior was
observed in 5 deployments, and ranged from 0.5% to 4.3% of the
time. Tether influence was also observed in 5 deployments (0.35–
28.6%).

Jellyfish behavior classification
Tether-influence classification
The tether-influence classifier had an AUPRC of 0.860±0.032
(mean±s.e.), and using the EER threshold had a precision of
86.1±5.3%, recall of 73.5±3.8% and accuracy of 97.6±0.4%. In
order of selection by SFS, the features were: (1) spectral energy of
DAx over 8 Hz, (2) mean PDBA, (3) number of peaks in the PDBA,
and (4) mean DAx. SFS found no additional features that
appreciably improved performance.

We used the tether-influence classifier to classify each
unannotated in situ period as influenced or uninfluenced. Table S3
shows the proportion of each deployment classified as influenced,
which ranged from 3.3% to 35.1%. To understand how the tether
influenced in situ behavior, we evaluated how normalized ODBA
and orientation change differed between annotated uninfluenced and
influenced periods (Fig. 2B,C). Themaximum normalizedODBAof
influenced periods (median 2.05) tended to be larger than that of
uninfluenced periods (median 1.27; Mann–Whitney U-test, two-
sided P<0.0001). Similarly, orientation change tended to be greater
during influenced periods (median 30.8 deg) than during
uninfluenced periods (median 5.6 deg; Mann–Whitney U-test,
two-sided P<0.0001). That is, jellyfish exhibited greater ODBA and
more severe orientation changes when influenced by the tether.
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Activity classification
The activity classifier had an AUPRC of 0.747±0.047 (mean±s.e.)
and using the EER threshold, had a precision of 74.3±4.9%, recall of
76.4±2.7% and accuracy of 99.0±0.1%. Fig. 2D demonstrates the
average PR curve used to identify the EER threshold. The features, in
order of selection by SFS, were: (1) number of peaks in the PAV, (2)
sparsity of the PAV spectrum and (3) sparsity of the PDBA spectrum.
Note that since drifting occupied only 1.9% of the annotated

periods, a simple majority prediction rule has an accuracy of 98.1%.
The other metrics therefore give more insight into whether the
classifier actually learns discriminative information about the
categories, rather than simply which category is more common. In
comparison to our method, the baseline of ODBA thresholding had
an AUPRCof 0.585±0.056 and, with the EER threshold, a precision
of 68.9±9.3%, recall of 49.9±3.5% and accuracy of 98.6±0.1%.
Training our classifier without gyroscope features and only with
accelerometry features gave an AUPRC of 0.685±0.024, precision
of 64.1±3.8%, recall of 63.7±4.7% and accuracy of 98.6±0.1%
using the EER threshold.

We used our method to classify each unannotated in situ period as
swimming or drifting, which provided estimates of how much time
each jellyfish spent for each activity. We first removed periods
predicted to be tether-influenced, so that our estimates are restricted
to data representative of natural behavior. The proportion of
uninfluenced time each jellyfish was classified as drifting ranged
between 0% and 5.6% (Table S3), with the exception of deployment
S1-1 (19.1%) which also experienced frequent tether influence
(both annotated and predicted). We can then combine the outputs of
the influence classifier, activity classifier, and orientation estimation
(again, restricted to periods predicted as uninfluenced) to visualize
fine-scale information about in situ behavior over several hours
(Fig. 3).

Classifier trained on in situ versus laboratory data
When trained and evaluated only on laboratory data, the activity
classifier had an AUPRCof 0.894±0.067 (mean±s.e.) and, using the
EER threshold, precision of 87.4±6.1%, recall of 90.3±4.4% and
accuracy of 99.4±0.2%. However, predictions made by this
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classifier on the annotated in situ data had an accuracy of 96.3%,
precision of 0% and recall of 0%. We emphasize that this means
none of the periods classified as drifting were truly drifting and
none of the drifting periods were correctly classified. Similarly,
ODBA thresholding had an optimistic AUPRC of 0.865±0.047
(mean±s.e.), precision of 78.2±6.3%, recall of 81.1±4.0% and
accuracy of 99.1±0.1% when CV was performed only on laboratory
data. However, predictions on annotated in situ data had an accuracy
of 90.8%, precision of 0% and recall of 0%.

In situ versus laboratory behavior
The maximum normalized ODBA of uninfluenced laboratory
periods (median 1.98) tended to be greater than that of in situ
uninfluenced periods (median 1.27; Mann–Whitney U-test, two-
sidedP<0.0001). Orientation change also tended to be greater during
uninfluenced laboratory periods (median 11.6 deg) than during
uninfluenced in situ periods (median 5.6 deg; Mann–Whitney U-
test, two-sided P<0.0001). Note that test tank walls did not cause
turning behavior, since the tether length could not reach them.

Conclusions
Our work provides a pipeline for interpreting fine-scale in situ
behavior of a zooplankton species (C. fuscescens) over long
durations. Our approach of combining biologging with supervised
ML methods yields records of in situ activity and orientation of
individual jellyfish for several hours (up to 10 h so far), and may
include the first successful in situ deployments of magnetometers
and gyroscopes on jellyfish. Using our activity classifier, our
estimates of in situ swimming activity on unannotated durations (on
average 96.4% of the time; Table S3) is compatible with swimming
in our annotated footage (on average 98.7% of behavior not
annotated as unknown; Table S2). These long periods of sustained
swimming with limited bouts of drifting are consistent with activity
budget estimates of other oblate jellyfish (Colin et al., 2003;
Costello et al., 1998), whose rowing mode of propulsion has been
shown to be energy efficient (Dabiri et al., 2010; Gemmell et al.,
2018). In spite of tether influence, uninfluenced periods of data also
revealed that tagged animals underwent stereotypical vertical
excursions (Fig. 3A; Hays et al., 2012). Although future studies
of fine-scale zooplankton behavior would be best conducted with
tetherless tag retrieval methods, our approach provides a reasonably
precise solution for detecting this influence and removing it, since it
may compromise findings on in situ energetics and orientation
(Fig. 2B,C; Fossette et al., 2015; Hays et al., 2008).
Our findings also highlight the importance of collecting in situ

biologging data, rather than captive laboratory data, for developing
behavioral classifiers. An assumption fundamental to justifying the
deployment of MLmethods, is that the data seen during training and
inference are drawn from the same underlying distribution (Pan and
Yang, 2010; Sugiyama et al., 2007; Zhang et al., 2013). However,
classifiers for interpreting accelerometry data have been
overwhelmingly trained and validated on laboratory data (Carroll
et al., 2014). In doing this, these studies implicitly assume that
behavioral data generated in the laboratory is distributionally similar
to in situ behavioral data. Our findings suggest that this assumption
has limited applicability, even for organisms displaying simple
behaviors like swimming and drifting. First, basic descriptive
statistics differed significantly between laboratory and in situ data:
jellyfish pulses induced greater orientation changes and greater
ODBA in the laboratory than in situ. Second, the activity classifier
trained and validated solely on laboratory data had optimistic
estimates of precision and recall, but performed poorly with zero

precision and recall when evaluated on in situ data. We highlight
this as a cautionary tale against naively deploying ML classifiers
developed on laboratory data in the field. As biologging moves
forward, methods involving technologies that capture the behavioral
ground truth of in situ data, such as camera tags, are strongly
encouraged.

Our work also underscores the limitations of ODBA in
characterizing even simple in situ behaviors. ODBA thresholding
yielded zero precision and recall in classifying in situ swimming and
drifting, but performed reasonably well when trained and evaluated
on laboratory activity. This suggests that the standard way of
computing ODBA may not be robust to dynamic and unpredictable
sources of noise in in situ data (Shepard et al., 2008). Beyond
accelerometry, our results also show that leveraging information
from other sensors (e.g. gyroscope) can improve in situ behavioral
classification considerably. Looking forward, our methods open the
door to investigating more complex questions about fine-scale
zooplankton behavior, such as how these species orient themselves
in a current, whether they exhibit rolling behavior or lateral
preferences (Fig. 3), and whether their behavioral patterns
distinguish them from passive drifters.
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Table S1. Summary of laboratory and in situ deployments of ITAG on Chrysaora fuscescens 

Laboratory Animal ID Date deployed Tag ID Tag data 

(sec) 

Video footage 

(sec) 

Drogue 

depth (m) 

Location collected Date collected 

T1-1 18/05/18 e2 2321 1916 N/A 36.7968, -121.8298 18/05/18 

T2-1 18/05/21 b7 4562 2866 N/A 36.7968, -121.8298 18/05/18 

T2-2 18/05/21 e2 3110 3004 N/A 36.7968, -121.8298 18/05/18 

T3-1 18/05/31 b7 4257 4044 N/A 36.86749, -121.9027 18/04/06 

In situ Location deployed Time deployed 

(PDT) 

S1-1 18/04/24 24 23479 264 5 36.8315 -121.8767 10:42 

S1-2 18/04/24 3c 2166 614 None 36.8355, -121.8750 12:06 

S1-3 18/04/24 e2 20571 789 9 36.8383, -121.8759 12:40 

S2-1 18/05/14 24 16893 1619 9 36.8243, -121.9247 11:00 

S2-2 18/05/14 e2 19464 1374 9 36.8219, -121.9234 12:21 

S3-1 18/05/17 e2 10289 1332 9 36.8397, -121.8854 12:42 
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S3-2 18/05/17 24 2484 0 9 36.8333, -121.8827 13:52 

S3-3 18/05/17 b7 

 

36400 975 9 

 

36.8302, -121.8790 14:21 

Footnotes: During the S3-2 deployment, the ROV lost track of the jellyfish almost immediately after release due to strong currents and no 

viable footage of behavior was recorded. In four out of the eight deployments (S1-1, S1-3, S3-1, and S3-2), the tag was still attached to the 

jellyfish at the time of retrieval. In the remaining four deployments (S1-2, S2-1, S2-2, and S3-3), the jellyfish was no longer attached. 
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Table S2. Summary of laboratory and in situ video footage annotations 

Laboratory Animal 

ID 

Total 

annotated 

footage 

(sec) 

Activity Tether influence Unannotated 

tag data 

after footage 

(min) 

Drift (sec) Swim (sec) Unknown 

(sec) 

Taut tether 

(sec) 

Slack tether 

(sec) 

Unknown 

(sec) 

T1-1 1916 0 1916  

(100%) 

0 1093 

(57.0%) 

816  

(42.6%) 

7  

(0.4%) 

N/A 

T2-1 2866 55 

(1.9%) 

2811 

(98.1%) 

0 575  

(20.1%) 

2253  

(78.6%) 

38  

(1.3%) 

N/A 

T2-2 3004 

 

4 

(0.1%) 

3000 

(99.9%) 

0 550  

(18.3%) 

2454  

(81.7%) 

0 N/A 

T3-1 4044 311  

(7.7%) 

3733 

(92.3%) 

0 0 4044  

(100%) 

0 N/A 

Total laboratory 11830 370  

(3.1%) 

11460 

(96.9%) 

0 2218 

(18.7%) 

9567  

(80.9%) 

45  

(0.4%) 

N/A 

In situ S1-1 154 0 154 

(100%) 

0 24  

(15.6%) 

102  

(66.2%) 

28  

(18.2%) 

388 

 S1-2 590 

 

3 

(0.5%) 

350  

(59.3%) 

237 

(40.2%) 

25  

(4.2%) 

136  

(23.1%) 

429 

(72.7%) 

37 

 S1-3 653 

 

5 

(0.8%) 

631 

(96.6%) 

17  

(2.6%) 

127  

(19.4%) 

207  

(31.7%) 

319 

(48.9%) 

339 

 S2-1 1431 7 

(0.5%) 

1415 

(98.9%) 

9  

(0.6%) 

0 727  

(50.8%) 

704 

(49.2%) 

262 
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 S2-2 1347 0 1347  

(100%) 

0 0 1285  

(95.4%) 

62  

(4.6%) 

311 

 S3-1 1158 31  

(2.7%) 

1116  

(96.4%) 

11  

(0.9%) 

69  

(6.0%) 

285  

(24.6%) 

804 

(69.4%) 

146 

 S3-2 0 N/A N/A N/A N/A N/A N/A 54 

 S3-3 762 33  

(4.3%) 

721  

(94.6%) 

8  

(1.0%) 

80  

(10.5%) 

83  

(10.9%) 

599 

(78.6%) 

590 

Total in situ 6095 79  

(1.3%) 

5734  

(94.1%) 

282  

(4.6%) 

325  

(5.3%) 

2825  

(46.3%) 

2945 

(48.3%) 

2127 
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Table S3. Tether-influence and activity predictions for individual jellyfish 

Deployment ID Representative pulse frequency 

(pulses/sec) 

Unannotated data* classified as influenced Unannotated data* classified as drifting 

(out of time classified as uninfluenced) 

S1-1 0.260 35.1% 19.1% 

S1-2 0.487 21.2% 0% 

S1-3 0.615 6.0% 0.9% 

S2-1 0.520 3.3% 0% 

S2-2 0.466 5.0% 0.1% 

S3-1 0.275 28.2% 5.6% 

S3-2 0.422 9.8% 0.6% 

S3-3 0.380 11.4% 2.7% 

* Rightmost column of Table S2.
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Movie 1. Examples of annotated in situ and laboratory footage. In order, uninfluenced 

in situ swimming, tether-influenced in situ swimming, in situ swimming with unknown tether 

status, uninfluenced in situ drifting, tether-influenced in situ drifting, and swimming and 

drifting in the MBARI Test Tank. 
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http://movie.biologists.com/video/10.1242/jeb.207654/video-1

